Madde Tepki Kuramları – 2 Dersi

Çalışma Paketi - 2

Konu: Madde Tepki Kuramı - MTK

Hedefler:

- 1 ve 2 parametreli lojistik (1PL-2PL) modellerini kullanarak madde parametrelerini kestirme,
- Her bir madde için theta koşullu olasılıkları hesaplama,
- Her bir madde için madde karakteristik eğrilerini (ICC:Item Characteristic Curve) çizdirme,
- Madde bilgi ve test bilgi fonksiyonlarını hesaplama ve grafikleştirme.

Gerekli programlar: (1) Mplus, (2) R Studio

Bu çalışma paketi, Mplus ve R Studio ile olmak üzere iki programla birbirini tamamlayan analizlerin yapıldığı iki bölümden oluşmaktadır. Her bölümde ilk olarak veri ile ilgili bilgiler, ardından girdi (input, syntax) komutları ile analiz sonucunda elde edilen çıktılar verilmiştir.

Bölüm 1 - Mplus ile 1PL ve 2PL modelleriyle madde parametrelerini kestirme

Bu bölümde bir ve iki parametreli lojistik modelleri kullanarak madde parametrelerini kestireceğiz ve kestirdiğimiz bu parametreleri bir sonraki adında R Studio programında veri olarak kullanıp her bir madde için theta koşullu olsılıkları hesaplayarak madde karakteristik eğrilerini, madde bilgi fonksyonu ve test bilgi fonksiyonu eğrilerini çizdireceğiz.

Veri

Bu analizde kullanacağımız "data-1.dat" adlı veri, Çalışma Paketi-1'de kullanılan verinin dat formatında kaydedilmiş versiyonudur. Veride, 1000 kişinin 21 madde için 0-1 kategorilerine verdiği tepkiler bulunmaktadır. Verinin ilk sütununda kişileri gösteren "id" numarası bulunmaktadır ve veride aşağıda veridliği üzere değişken isimleri yer almamaktadır.

🔲 da	ita-1 - Notepa	d													
File	Edit Forma	at View I	Help												
1	0	1	1	1	1	0	1	0	0	0	0	0	1	1	0
2	1	1	1	1	1	0	1	1	1	1	1	1	0	0	0
3	1	1	1	1	1	0	1	1	1	1	0	1	1	1	0
4	1	1	0	1	1	1	1	1	1	1	1	0	1	0	0
5	1	1	0	1	1	0	0	1	0	0	0	1	0	0	0
6	1	1	1	1	1	0	1	1	0	0	0	0	1	0	0
7	0	0	1	1	1	0	1	0	0	0	1	0	0	1	0

Analiz ve Sonuçlar

Bu aşama için ihtiyaç duyulan Mplus programına sahip değilseniz, aşağıda verilen linkten demo versiyonunu indirerek kullanabilirsiniz ancak değişlen sayıları sınırlı olduğundan aşağıdaki analizleri bu sınırlamalara göre uyarlayarak gerçekleştirebilirsiniz.

Mplus demo versiyonu için: https://www.statmodel.com/demo.shtml

Analizlere başlamak için Mplus programının kurulumunu tamamladıktan sonra aşağıda gösterildiği gibi **Open** ile gösterilen dosya açma işaretine tıklayarak mevcut veri dosyasını, analizlerin yapılacağı girdi

(input) dosyasını, analiz sonuçlarını gösteren çıktı (output) dosyalarını açabiliriz. Boş bir girdi dosyasını açmak için ise menünün en başında yer alan **New** ile gösterilen ikonu tıklamalıyız.

Şimdi analizleri yapmak için **Open** ikonunu tıklayarak verimizi açalım ve açtığımız dosyada yalnızca verinin olduğundan başka herhangi bir sembol olmadığından emin olalım. Eğer veri dışında semboller varsa bu sembolleri silip verimizi tekrar kaydedelim. Veride tanınmayan semboller bulunduğunda Mplus veriyi okuyamamaktadır. Veriyi açtığımızda aşağıdaki gibi bir ekran göreceğiz.

MA I	Aplus	s - [dat	ta-1]																		
	File	Edit	View	Mplus	Plot	Diagr	am	Window	Help												
	2		X 🖻	• 🖻 🖨	RUN	$ \mathbb{M} $	ĸ	12 <u>3</u>	ice ici	11.		1.	2								
þ	_	0	1 :	1 1	1	0	1	0 0	0	0	0	1	1	0	0	1	0	0	0	0	
2	2	1	1 1	L 1	1	0	1	1 1	1	1	1	0	0	0	0	1	1	1	0	0	
3	3	1	1 1	L 1	1	0	1	1 1	1	0	1	1	1	0	1	1	0	0	1	0	
4	ł	1	1 () 1	1	1	1	1 1	1	1	0	1	0	0	0	0	0	1	1	1	
5	5	1	1 () 1	1	0	0	1 0	0	0	1	0	0	0	1	1	0	1	0	0	

Bir Parametreli Lojistik (1PL) Model Kestirimleri

Veriyi açtıktan sonra **New** ikonu tıklanarak yeni bir girdi dosyası açacağız. Analiz komutlarını yazacağımız bu girdi dosyası ile ilgili daha ayrıntılı bilgiler elde etmek için aşağıdaki linki ziyaret ederek Mplus uygulama örneklerini inceleyebilirsiniz.

Mplus kullanıcı kılavuzu ve örnekleri için: https://www.statmodel.com/ugexcerpts.shtml

Açtığımız girdi dosyasında temel olarak veri, değişken, analiz ve model başlıkları bulunurken aşağıda verilen girdi komutarındaki diğer başlıkları bu analizdeki ihtiyaca cevap verecek şekilde düzenleyeceğiz ve "1PL_model.inp" olarak kaydedeceğiz. Her komutun ne anlama geldiğini gösteren bilgilerin de eklendiği aşağıda verilen girdi dosyası çalıştırıldığında madde ayırıcılık indekslerinin tüm maddeler için eşit olacak şekilde kestirildiği ve madde güçlük indekslerinin tüm maddeler için serbest kestirildiği 1PL model sonuçlarını elde edeceğiz. Bu girdi dosyasını çalıştırmak için **Run Mplus** ikonunu tıklamalıyız.

```
TITLE: 1PL model for binary items
DATA: FILE IS Data-1.dat; !veri adı
VARIABLE: NAMES ARE id m1-m21; !değişken isimleri
USEVARIABLES ARE m1-m21; !analizde kullanılacak değişkenler
 CATEGORICAL ARE m1-m21; !kategorik değişkenler
IDVARIABLE IS id;
ANALYSIS: ESTIMATOR IS ML; !parametre kestirim yöntemi ML
LINK IS LOGIT; !lojistik model
MODEL: TEST BY m1-m21* (loading); !1PL için faktör yükleri eşitlendi
[m1$1-m21$1*]; !madde threshold'ları serbest kestirildi
[TEST@0]; TEST@1; ! Faktör ort=0 and var=1
OUTPUT: STDYX; ! Standartlaştırılmış sonuçlar
SAVEDATA: SAVE = FSCORES; !faktör puanlarını kaydetme (thetas)
FILE IS CP-2 1PLThetas.dat;
PLOT: TYPE IS PLOT1;
TYPE IS PLOT2;
TYPE IS PLOT3;
```

Analiz sonucunu "1pl_model.out" dosyasında görebiliriz. Bu çıktı dosyasında ilk olarak verinin doğru okunduğunu kontrol etmek için veriyle ilgili temel bilgiler yer almaktadır. Bu bölümde değişken, kişi ve madde sayısı gibi başlıkları kontrol edebiliriz. Ardından, her bir madde için 0-1 kategorilerine verilen yanıtların oranlarını ve model uyum indekslerini göreceğiz. Şu anki uygulamada odağımız madde parametrelerini kestirmek olduğundan madde ayırıcılık ve güçlük indekslerini gösteren ve aşağıda verilen bölüme geçebiliriz. Bu değerlerden ilk sütun paramtere kestirimlerini, ikinci sürun standart hataları, üçüncü sütun kestirim/std hata oranını ve son sütun da p değerlerini göstermektedir.

M plut	Mplus - [1p	l_model]					
	File Edit	View	Mplus P	lot Diagra	am Win	dow H	Help	
Īr		X 🗈			1/23	ic ic.	141 Hr. 1.19 1.1	
	TRT PARA	METER	TZATION	IN TWO-	PARAME'	TER LO	OGISTIC METR	TC
	WHERE TH	E LOG	IT IS DI	SCRIMIN	ATION*	(THET)	A - DIFFICUL	TY)
						•		
	Item Di	iscrim	inations	•				
	TEST	BY						
	Ml			0.681	(0.024	27.845	0.000
	M2			0.681		0.024	27.845	0.000
	M3			0.681		0.024	27.845	0.000
	M4			0.681	(0.024	27.845	0.000
	M5			0.681	(0.024	27.845	0.000
	M6			0.681		0.024	27.845	0.000
	M7			0.681		0.024	27.845	0.000
	M8			0.681		0.024	27.845	0.000
	M9			0.681		0.024	27.845	0.000
	MIU			0.681		0.024	27.845	0.000
	M12			0.681		0.024	27.015	0.000
	M13			0.681		0.024	27.015	0.000
	M14			0.681		0.024	27.845	0.000
	M15			0.681		0.024	27.845	0.000
	M16			0.681	,	0.024	27.845	0.000
	M17			0.681		0.024	27.845	0.000
	M18			0.681		0.024	27.845	0.000
	M19			0.681	(0.024	27.845	0.000
	M20			0.681	(0.024	27.845	0.000
	M21			0.681	(0.024	27.845	0.000
Tte	-m Diff	iculti	69					
	M1\$1			1.721	0.	128	-13,452	0.000
	M2\$1		_	1.363	0.	119	-11.471	0.000
	M3\$1		_	1.177	0.	115	-10.248	0.000
	M4\$1		_	0.802	0.	108	-7.400	0.000
	M5\$1		_	0.466	0.	105	-4.452	0.000
	M6\$1			0.135	0.	103	1.309	0.191
	M7\$1			0.343	0.	104	3,311	0.001
	M8\$1			0.422	0.	104	4.051	0.000
	MGSI			0 522	0.	105	4 963	0.000
	MIOSI			0.730	0.	107	6.794	0.000
	MIISI			0.895	0.	110	8,150	0.000
	M12\$1			1.022	0	112	9.127	0.000
	M13\$1			1.406	0.	120	11.723	0.000
	M14\$1			1.900	0.	133	14.249	0.000
	M15\$1			1.926	0.	134	14.361	0.000
	M1691		_	0.734	0.	107	-6 828	0.000
	M17\$1		_	0 775	0.	108	-7 172	0.000
	MISCI			0 515	0.	105	4 902	0.000
	MIGGI			0 436	0.	104	4 173	0.000
	M20\$1			1 166		115	10 167	0.000
	M2101			1 202	0.	117	11 011	0.000
	nzişi			1.494	υ.	111	11.011	0.000

Elde edilen kestirimlere bakıldığında, madde ayırt ediciliği (a parametresi) tüm maddeler için eşit olacak şekilde kestirilirken madde güçlükleri (b parametresi) tüm maddeler için ayrı ayrı kestirilmiştir. Şimdi, bu parametre kestirimlerini txt uzantılı bir dosyaya kopyalayalım ve ilk sütunda a parametresi, ikinci sütunda b parametresi ve son sütunda 0 olarak aldığımız c parametresi olacak şekilde madde parametrelerini içeren bir veri dosyası oluşturalım. Bu dosyaya c parametresini almamızın sebebi her ne kadar şu an 3PL model çalışmasak da kodlarımızı buna göre oluşturmak ve 3PL model çalıştığımızda daha rahat uyarlayabilmek.

Oluşturduğumuz bu dosyayı bu çalışma paketinin ikinci bölümünde kullanacağız. Madde parametrelerini içeren dosya aşağıdaki gibi görünecek. Bu dosyayı "itempar_1PL.txt" olarak kaydedelim.

/// *itempa	ar_1PL - No	tepad
File Edit	Format	View Help
0.681	-1.721	0.000
0.681	-1.363	0.000
0.681	-1.177	0.000
0.681	-0.802	0.000
0.681	-0.466	0.000
0.681	0.135	0.000
0.681	0.343	0.000
0.681	0.422	0.000
0.681	0.522	0.000
0.681	0.730	0.000
0.681	0.895	0.000
0.681	1.022	0.000
0.681	1.406	0.000
0.681	1.900	0.000
0.681	1.926	0.000
0.681	-0.734	0.000
0.681	-0.775	0.000
0.681	0.515	0.000
0.681	0.436	0.000
0.681	1.166	0.000
0.681	1.292	0.000

Mplus analizleri sonucunda ayrıca, madde karakteristik eğrileri, test bilgi fonksiyonu ile ilgili grafikler elde edilebiliyoruz. Bu grafikleri incelemek için **Plot** > **View plots** tıklanarak örneğin madde karakteristik eğrilerini elde edebiliriz. Birinci madde için madde karakteristik eğrisini aşağıdaki gibi elde edeceğiz.

Tüm maddeler için madde karakteristik eğrilerini de aşağıdaki gibi elde edebiliriz.

Son olarak, test bilgi fonksiyonunun grafiğini aşağıdaki gibi elde edebiliriz.

Bu adımda, 1PL model kestirimlerinde izlediğimiz süreci izleyeceğiz ancak madde ayırıcılık indekslerini tüm maddeler için serbest kestireceğiz. Bunun için 1PL'dekine benzer ancak faktör yükleriyle ilgili sınırlamanın kaldırıldığı komut satırında farklılığın olduğu aşağıda verildiği gibi bir girdi dosyası kullanacağız.

TITLE: 2PL model for binary items DATA: FILE IS Data-1.dat; !veri adı VARIABLE: NAMES ARE id m1-m21; !değişken isimleri USEVARIABLES ARE m1-m21; !analizde kullanılacak değişkenler CATEGORICAL ARE m1-m21; !kategorik değişkenler **IDVARIABLE IS id:** ANALYSIS: ESTIMATOR IS ML; !parametre kestirim yöntemi ML LINK IS LOGIT; !lojistik model MODEL: TEST BY m1-m21*; !2PL için faktör yükleri serbest kestirildi [m1\$1-m21\$1*]; !madde threshold'ları serbest kestirildi [TEST@0]; TEST@1; ! Faktör ort=0 and var=1 OUTPUT: STDYX; ! Standartlaştırılmış sonuçlar SAVEDATA: SAVE = FSCORES; !faktör puanlarını kaydetme (thetas) FILE IS CP-2 2PLThetas.dat; PLOT: TYPE IS PLOT1; TYPE IS PLOT2; TYPE IS PLOT3;

Bir önceki adımda olduğu gibi, 2PL model için de kestirilen madde ayırıcılık ve güçlük indekslerini kopyalayıp "itempar_2PL.txt" adlı bir dosyaya kaydedeceğiz ve bunu R Studio programındaki hesaplamalarda veri olarak kullanacağız. Bu dosya aşağıdaki gibi görünecek. Aşağıda verilen dosyada görüldüğü üzere her bir madde için madde ayırıcılık ve madde güçlük indeksleri ayrı ayrı kestirilmiştir.

Ayrıca, bir parametreli lojistik modelde olduğu gibi aynı yolları izleyerek bu model için de madde karakteristik eğrilerini ve bilgi fonksiyonu eğrilerini elde edebiliriz.

📃 itempar	_2PL - Not	epad
File Edit	Format	View Help
0.714	-1.655	0.000
0.559	-1.614	0.000
0.578	-1.352	0.000
0.647	-0.837	0.000
0.629	-0.497	0.000
0.687	0.134	0.000
0.666	0.350	0.000
0.787	0.376	0.000
0.798	0.459	0.000
0.791	0.647	0.000
0.727	0.849	0.000
0.456	1.451	0.000
0.746	1.305	0.000
0.611	2.084	0.000
0.824	1.651	0.000
0.618	-0.796	0.000
0.663	-0.792	0.000
0.675	0.519	0.000
0.842	0.368	0.000
0.671	1.180	0.000
0.667	1.316	0.000

Bölüm-2: R Studio ile theta koşullu olasılıkları hesaplama ve ilgili eğrileri çizdirme

Bu bölümde, ilk bölümde kestirdiğimiz madde parametrelerini kullanarak her bir madde için theta koşulunda o maddeye yanıt verme olasılıklarını hesaplayacağız ve ardından madde karakteristik eğrilerini çizdireceğiz, her bir madde için ve tüm test için bilgi fonksiyonlarını hesaplayacağız ve grafikleştireceğiz.

Bir Parametreli Lojistik (1PL) Model Hesaplamaları ve Grafikleri

Veri

Bu analizde kullanılan "itempar_1PL.txt" adlı veri, bir önceki adımda kestirilen madde parametrelerinin txt formatında kaydedilmiş versiyonlarıdır. Veriyi programa okutmak için aşağıdaki komutlar girilerek komutlardan hangilerini çalıştırmak istiyorsak o bölümü seçerek dosyanın sağ üst bölümünde bulunan **Run** komutuna tıklayarak çalıştırabiliriz.

```
#çalışma klasörü oluşturmak için#
#kendi klasörümüz için isimleri değiştirmeliyiz#
setwd("C:/Users/Derya/Desktop/MTK-2_Çalışma_Paketi-2")
#veriyi okutmak için#
#veri = 1PL için kestirilen a ve b parametreleri
itempar_1PL <- data.matrix(read.table("itempar_1PL.txt", header = FALSE))
#veriyle ilgili tanımlamalar
a<-cbind(itempar_1PL[,1]) #a (ayırıcılık)parametresi
b<-cbind(itempar_1PL[,2]) #b (güçlük) parametresi
g<-cbind(itempar_1PL[,3]) #c (şans, tahmin) parametresi
k<-21 #madde sayısı
theta <- seq(-4, 4, length = 81) #-4,+4 aralığında 81 noktaya bölünmüş theta değerleri
D<- -1.702 #formüldeki D sabiti</pre>
```

#elde ettiğimiz sonuçları yazdırmak için satırlat theta, sütunlar maddeler olacak şekilde

P_result_1<-matrix(c(rep(0,length(theta)*k)),length(theta),k) Q_result_1<-matrix(c(rep(0,length(theta)*k)),length(theta),k) I_result_1<-matrix(c(rep(0,length(theta)*k)),length(theta),k) Veriyi okuttuğumuzda aşağıda verildiği gibi kestirilen madde parametrelerini görmeliyiz. Veriyi okuttuktan sonra verinin birinci sütununu ayırıcılık (a) parametresi olarak, ikinci sütununu güçlük (b) parametresi olarak ve üçüncü sütununu şans/tahmin (c) parametresi olarak tanımlayacağız ve bu değerleri formüllerde kullanacağız. Ayrıca, bu noktada formüllerde kullanmak üzere madde sayısını, D sabitini ve -4 ile +4 aralığında 81 noktaya bölünmüş theta değerlerini tanımlayacağız.

	2 7	Filter	
*	¥1 [‡]	V2 [‡]	V3 [‡]
1	0.681	-1.721	0
2	0.681	-1.363	0
3	0.681	-1.177	0
4	0.681	-0.802	0

Son olarak, her bir madde için hesaplayacağımız olasılık değerleri (p), 1-olasılık değerleri (q) ve bilgi fonksiyonlarını (I) yazdıracağımız çıktı dosyalarını oluşturacağız.

Analiz ve Sonuçlar

Analiz bölümünde, ilk olarak birinci madde için theta koşullu olasılıkları hesaplayıp madde karakteristik eğrisini çizdireceğiz. Ardından, tüm maddeler için olasılık değerleri (p), 1-olasılık değerleri (q) ve bilgi fonksiyonlarını (I) hesaplayacağız. Genel bir formül oluşturmak adına üç parametreli lojistik modeli kullanılmıştır ancak şans parametresi 0 alındığı için formül sadeleşmektedir. Üç parametreli lojistik model için theta koşullu olasılık (P):

$$P_{g}(\theta) = c_{g} + (1 - c_{g}) \frac{e^{Da_{g}(\theta - b_{g})}}{1 + e^{Da_{g}(\theta - b_{g})}}$$

Formülde, b madde güçlüğü, a madde ayırıcılığı, c şans/tamin parametresi, θ yetenek (theta) düzeyi, D=-1.702 sabiti göstermektedir.

Yukarıda verilen komut çalıştırıldığında aşağıda verilen ve her bir theta noktası için hesaplanan p değerlerini ve verilen madde karakteristik eğirişini elde edeceğiz. Yukarıdaki komutlar kullanılarak her madde için ilgili parametre veriden seçilerek yeniden hesaplanabilir.

> p_1

[1] 0.06651470 0.07408317 0.08243677 0.09163910 0.10175476 0.11284833 0.12498305 [8] 0.13821934 0.15261293 0.16821284 0.18505911 0.20318039 0.22259147 0.24329078 [15] 0.26525819 0.28845300 0.31281252 0.33825127 0.36466097 0.39191147 0.41985265 [22] 0.44831723 0.47712451 0.50608478 0.53500427 0.56369031 0.59195639 0.61962695 [29] 0.64654150 0.67255802 0.69755538 0.72143481 0.74412045 0.76555900 0.78571858 [36] 0.80458714 0.82217026 0.83848885 0.85357666 0.86747777 0.88024431 0.89193418 [43] 0.90260922 0.91233338 0.92117142 0.92918761 0.93644487 0.94300398 0.94892309 [50] 0.95425732 0.95905849 0.96337508 0.96725209 0.97073117 0.97385062 0.97664561 [57] 0.97914824 0.98138781 0.98339092 0.98518170 0.98678200 0.98821154 0.98948812 [64] 0.99062777 0.99164491 0.99255249 0.99336215 0.99408431 0.99472831 0.99530254 [71] 0.99581449 0.99627085 0.99667761 0.99704014 0.99736322 0.99765111 0.99790764 [78] 0.99813621 0.99833984 0.99852126 0.99868289

Şimdi tüm maddeler için olasılık değerleri (p), 1-olasılık değerleri (q) ve bilgi fonksiyonlarını (I) ve tüm test için test bilgi fonksiyonunu ve standart hatayı hesaplayabiliriz. Bu hesaplamalarda kullanılan formüller aşağıdaki gibidir:

Madde bilgi fonksiyonu:

$$I_j(\theta) = a_j^2 \left[\frac{Q_j(\theta)}{P_j(\theta)} \right] \left[\frac{(P_j(\theta) - c_j)^2}{(1 - c_j)^2} \right],$$

Formülde, Q=1-P

Test bilgi fonksiyonu:

$$I(\theta) = \sum_{j=1}^{J} I_j(\theta),$$

Standart hata:

$$SE(\theta) = \frac{1}{\sqrt{I(\theta)}}$$

Aşağıda verilen kodlar çalıştırıldığında tüm maddeler için olasılık değerleri (p), 1-olasılık değerleri (q) ve bilgi fonksiyonlarını (I) hesaplayacağız ve bunları boş olarak oluşturduğumuz çıktı dosyalarına yazdıracağız.

```
#tüm maddeler için p, q ve I
t <- length(b)
for(t in 1:t){
    p <- g[t] + (1 - g[t]) * (1/(1 + exp(D * a[t] * (theta - b[t]))))
    P_result_1 [,t] <- round(p,3)
    q <- 1-p
    Q_result_1 [,t] <- round(q,3)
    I_item <- (a[t]^2)*(q/p)*(((p - g[t])/(1 - g[t]))^2)
    I_result_1 [,t] <- round(I_item,3)
}</pre>
```

Bu komutlar sonucunda her bir çıktı dosyası aşağıdaki gibi hesaplanan değerlerle dolmuş olacak.

File Edit Code View Plots Session Build Debug Profile Tools Help	V21 ↓ 3 0.002 3 0.003 4 0.003 4 0.003
• • • • • • • • • • • • • • • • • • •	V21
Catigma_Paketi-2_Kodiar.R P_result_1 × V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 1 0.067 0.045 0.037 0.024 0.016 0.006 0.006 0.006 0.005 0.004 0.003 0.002 0.011 0.012 0.022 0.025 0.026 0.006 0.007 0.007 0.006 0.002 0.001 0.001 0.022 0.022 0.025 0.026 0.007 0.007 0.006 0.002 0.001 0.001 0.022 0.022 0.026 0.007 0.007 0.006 0.002 0.001 0.001 0.022 0.022 0.007 0.007 0.006 0.003 0.002 0.001 0.001 0.022 0.022 0.007 0.007 0.005 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.003 0.002 0.001 0.003 0.003 0.002 0.003 0.003 </th <th>V21</th>	V21
Pitter V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 1 0.067 0.045 0.037 0.024 0.016 0.008 0.006 0.005 0.004 0.003 0.002 0.001 0.022 0.023 0.005 0.004 0.003 0.002 0.001 0.022 0.026 0.006 0.007 0.007 0.005 0.004 0.003 0.002 0.001 0.022 0.026 0.007 0.007 0.005 0.004 0.002 0.001 0.022 0.026 0.007 0.007 0.005 0.004 0.002 0.001 0.022 0.026 0.007 0.007 0.005 0.004 0.002 0.001 0.022 0.026 0.023 0.026 0.007 0.006 0.005 0.004 0.002 0.001 0.025 0.026 0.003 0.022 0.001 0.018 0.007 0.005 0.002 0.001 0.025 0.002 0.001	 V21 0.002 3 0.003 4 0.003 4 0.003 4 0.003
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 1 0.067 0.045 0.037 0.024 0.016 0.008 0.006 0.005 0.004 0.003 0.002 0.001 0.002 0.022 0.023 0.005 0.006 0 2 0.074 0.050 0.041 0.027 0.016 0.007 0.007 0.005 0.004 0.003 0.002 0.001 0.001 0.022 0.026 0.007 0.007 0.005 0.004 0.002 0.001 0.001 0.022 0.002 0.001 0.001 0.022 0.002 0.001 0.001 0.028 0.007 0.007 0.005 0.004 0.002 0.001 0.001 0.022 0.003 0.007 0.007 0.005 0.005 0.003 0.002 0.001 0.001 0.028 0.007 0.007 0.005 0.005 0.003 0.002 0.003 0.002	 v21 ° 3 0.002 3 0.003 4 0.003 4 0.003 4 0.003
1 0.067 0.045 0.037 0.024 0.016 0.006 0.005 0.004 0.003 0.002 0.011 0.002 0.022 0.022 0.005 0.006 0.007 0 2 0.074 0.050 0.044 0.027 0.018 0.007 0.007 0.006 0.005 0.004 0.002 0.011 0.012 0.028 0.028 0.007 0.007 3 0.062 0.051 0.034 0.022 0.011 0.001 0.028 0.028 0.007 0.007 0.005 0.004 0.002 0.011 0.011 0.028 0.028 0.007 0.007 0.005 0.004 0.002 0.011 0.011 0.028 0.028 0.007 0.006 0.003 0.002 0.001 0.013 0.033 0.007 0.006 0.005 0.004 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.008 0.009 0.008 0.007 0.005 0.005 0.003 0.002 0.003 0.002 0.003 0.002 0.003 <	3 0.002 3 0.002 3 0.003 4 0.003 4 0.003 4 0.003 4 0.003 7 V21 0 7 0.998
2 0.074 0.057 0.041 0.027 0.007 0.007 0.005 0.004 0.003 0.002 0.001 0.001 0.028 0.028 0.007 0.007 0.005 3 0.052 0.054 0.033 0.021 0.010 0.008 0.007 0.005 0.004 0.002 0.011 0.028 0.028 0.007 0.007 4 0.052 0.051 0.034 0.023 0.012 0.009 0.008 0.007 0.005 0.004 0.002 0.001 0.011 0.028 0.028 0.007 0.007 0.005 5 0.102 0.057 0.038 0.026 0.017 0.008 0.007 0.005 0.005 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003 <th< td=""><td>3 0.002 3 0.003 4 0.003 4 0.003 4 0.003 7 V21 0 7 0.998</td></th<>	3 0.002 3 0.003 4 0.003 4 0.003 4 0.003 7 V21 0 7 0.998
3 0.052 0.044 0.030 0.007 0.007 0.005 0.004 0.002 0.001 0.001 0.022 0.022 0.007 0.007 0 4 0.092 0.062 0.051 0.034 0.023 0.012 0.009 0.006 0.007 0.006 0.005 0.004 0.002 0.001 0.031 0.033 0.007 0.006 5 0.102 0.057 0.038 0.026 0.013 0.010 0.008 0.007 0.005 0.005 0.001 0.001 0.031 0.033 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 <	3 0.003 4 0.003 4 0.003 • V21 + 7 0.998
4 0.092 0.061 0.031 0.032 0.012 0.009 0.008 0.007 0.006 0.003 0.002 0.001 0.031 0.033 0.007 0.008 0 5 0.102 0.057 0.038 0.026 0.013 0.010 0.009 0.008 0.007 0.005 0.003 0.002 0.001 0.031 0.033 0.008 0.009 0 6 Rstudio File Go to file/function • <t< th=""><th>4 0.003 4 0.003 • V21 + 7 0.998</th></t<>	4 0.003 4 0.003 • V21 + 7 0.998
S 0.102 0.070 0.057 0.038 0.026 0.013 0.009 0.008 0.007 0.005 0.003 0.002 0.002 0.033 0.036 0.008 0.009 0 RStudio File Edit Code View Plots Session Build Debug Profile Tools Help Qaisyma_Paketi-2_Kodiar.R × P_result_1 × Q_result_1 × ♥ Ga to file/function • Addins + ♥ Caligma_Paketi-2_Kodiar.R × P_result_1 × Q_result_1 × ♥ I V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V2c 1 0.935 0.955 0.956 0.977 0.995 0.994 0.995 0.996 0.997 0.998 0.999 0.975 0.974 0.994 0.993 0.995 0.996 0.997 0.998 0.999 0.975 0.971 0.993 0.993 0.993 0.995 0.996 0.997 0.998 0.999 0.977 0.993 0.993<	4 0.003
RStudio File Code View Plots Session Build Debug Profile Tools Help Image: Code View Plots Session Build Debug Profile Tools Help Image: Code View Plots Session Build Debug Profile Tools Help Image: Code Image: Code <td> ♥ V21 ♥ 0.998 </td>	 ♥ V21 ♥ 0.998
RStudio File Edit Code View Plots Session Build Debug Profile Tools Help Image: Code View Plots Session Build Debug Profile Tools Help Image: Code View Plots Session Build Debug Profile Tools Help Image: Code	
File Edit Code View Plots Session Build Debug Profile Tools Help • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • •	
● Caligma_Paketi-2_Kodlar.R × P_result_1 × Qresult_1 × ● Caligma_Paketi-2_Kodlar.R × P_result_1 × Qresult_1 × ● V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 1 0.933 0.955 0.963 0.976 0.994 0.994 0.995 0.997 0.997 0.998 0.999 0.978 0.977 0.995 0.994 0.92 2 0.926 0.950 0.959 0.973 0.882 0.991 0.993 0.995 0.996 0.997 0.998 0.999 0.975 0.974 0.994 0.993 0.933 0.944 0.954 0.970 0.971 0.993 0.993 0.995 0.996 0.999 0.999 0.971 0.993 0.993 0.92 0.933 0.944 0.966 0.977 0.988 0.996 0.997 0.998 0.999 0.969 0.967 0.993 0.992 0.933 0.943 0.966 0.977	¢ V21 ¢ 7 0.998
Image: Normal base in the image: Normal base inthe image: Normal base interestine terma base in th	 v21 ÷ 0.998
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V22 1 0.933 0.955 0.963 0.976 0.984 0.992 0.994 0.995 0.997 0.998 0.999 0.999 0.978 0.977 0.985 0.994 0.999 0.997 0.998 0.999 0.998 0.999 0.978 0.977 0.995 0.994 0.995 0.996 0.997 0.998 0.999 0.999 0.978 0.977 0.995 0.994 0.995 0.996 0.997 0.998 0.999 0.975 0.974 0.994 0.993 0.995 0.996 0.999 0.999 0.975 0.974 0.994 0.993 0.995 0.996 0.996 0.999 0.972 0.971 0.993 0.993 0.995 0.996 0.997 0.996 0.996 0.996 0.997 0.996	 ♥ V21 ♥ ♥ 0.998
1 0.933 0.955 0.963 0.976 0.984 0.992 0.994 0.995 0.996 0.997 0.998 0.999 0.998 0.999 0.978 0.977 0.995 0.994 0.994 0.995 0.997 0.998 0.999 0.998 0.999 0.978 0.977 0.995 0.994 0.994 0.995 0.997 0.998 0.999 0.999 0.975 0.974 0.994 0.993 0.995 0.996 0.997 0.998 0.999 0.975 0.974 0.994 0.993 0.933 0.993 0.995 0.996 0.997 0.998 0.999 0.997 0.994 0.993 0.995 0.996 0.996 0.999 0.997 0.971 0.994 0.993 0.995 0.996 0.996 0.999 0.997 0.991 0.993 0.993 0.995 0.996 0.999 0.997 0.991 0.993 0.993 0.995 0.996 0.999 0.997 0.998 0.999 0.997 0.993 0.996 0.997 0.998 0.996 0.996 0.996 0.9	0.998
2 0.950 0.953 0.973 0.962 0.991 0.993 0.994 0.995 0.996 0.997 0.998 0.999 0.975 0.974 0.994 0.993 0.915 3 0.918 0.944 0.954 0.970 0.990 0.992 0.993 0.995 0.996 0.998 0.999 0.975 0.974 0.994 0.993 0.914 4 0.908 0.944 0.966 0.977 0.986 0.991 0.993 0.993 0.995 0.996 0.997 0.998 0.999 0.972 0.971 0.993 0.993 0.995 0.996 0.996 0.999 0.972 0.971 0.993 0.993 0.995 0.996 0.997 0.998 0.999 0.972 0.971 0.993 0.992 0.993 0.995 0.996 0.997 0.998 0.996 0.997 0.998 0.996 0.997 0.998 0.996 0.996 0.993 0.992 0.991 0.993	
3 0.918 0.944 0.954 0.970 0.979 0.990 0.992 0.993 0.995 0.996 0.996 0.999 0.999 0.972 0.971 0.993 0.993 0.995 0.996 0.996 0.999 0.999 0.972 0.971 0.993 0.993 0.994 0.995 0.996 0.996 0.999 0.999 0.972 0.971 0.993 0.993 0.994 0.995 0.996 0.996 0.999 0.999 0.972 0.971 0.993 0.993 0.994 0.995 0.996 0.997 0.999 0.999 0.967 0.993 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 0.966 0.967 0.993 0.992 0.993 0.993 0.995 0.995 0.996 0.996 0.996 0.996 0.965 0.964 0.992 0.991 0.993 5 0.898 0.993 0.994 0.993 0.993 0.995 0.995	0.998
4 0.908 0.938 0.949 0.966 0.977 0.988 0.991 0.992 0.993 0.995 0.996 0.997 0.998 0.993 0.992 0.993 0.995 0.995 0.996 0.997 0.998 0.993 0.992 0.993 0.995 0.995 0.997 0.998 0.999 0.969 0.967 0.993 0.992 0.993 0.995 0.995 0.997 0.998 0.999 0.969 0.969 0.969 0.969 0.969 0.969 0.969 0.993 0.992 0.993 0.995 0.995 0.997 0.998 0.996 0.969 0.9	0.997
5 0.898 0.930 0.943 0.962 0.974 0.967 0.990 0.991 0.992 0.993 0.995 0.995 0.997 0.998 0.998 0.965 0.964 0.992 0.991 0	0.997
	0.997
s Kstudio	
File Edit Code View Plots Session Build Debug Profile Tools Help	
🗘 🔹 🖓 🔮 🗢 🔒 🛛 👔 🇀 🍌 Go to file/function 🔤 🔛 👻 Addins 👻	
Çaligma_Paketi-2_Kodiar.R* × P_result_1 × Q_result_1 × [result_1 ×	
(c) (2) (7) Filter	
▲ V1 ⁰ V2 ⁰ V3 ⁰ V4 ⁰ V5 ⁰ V5 ⁰ V5 ⁰ V6 ⁰ V7 ⁰ V8 ⁰ V9 ⁰ V10 ⁰ V11 ⁰ V12 ⁰ V13 ⁰ V14 ⁰ V15 ⁰ V16 ⁰ V17 ⁰ V18 ⁰ V19 ⁰ V20	V21 [‡]
1 0.029 0.020 0.016 0.011 0.007 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.000 0.000 0.010 0.011 0.002 0.003 0.00	0.001 🔶
2 0.032 0.022 0.018 0.012 0.008 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.011 0.011 0.012 0.003 0.003 0.003	
3 0.035 0.025 0.020 0.014 0.009 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.011 0.013 0.013 0.013 0.003 0.003 0.003	0.001
4 0.039 0.027 0.022 0.015 0.010 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.014 0.015 0.003 0.004 0.00	0.001
5 0.042 0.030 0.025 0.017 0.012 0.006 0.005 0.004 0.004 0.003 0.003 0.002 0.001 0.001 0.001 0.016 0.016 0.004 0.004 0.00	0.001 0.001 0.001

Şimdi hesapladığımız bu değerleri kullanarak seçtiğimiz maddeler için madde karakteristik eğrilerini, madde bilgi fonksiyonlarını çizebiliriz. Bunun için aşağıdaki kodları kullanabiliriz. Örneğin; aşağıdaki kodlarda 2, 6 ve 14 nolu maddeler için karakteristik eğrilerini ve bilgi fonksiyonlarını çizdirebiliriz. Bunun için P ve I çıktı dosyalarımızdan ilgili maddenin bulunduğu sütunu seçip grafiği çizebiliriz.


```
plot(theta, P_result_1[,2], type="l", xlim=c(-4,4), ylim=c(0,1), # P result 1[,2] p result dosyasındaki 2.sütun
  xlab="Theta", ylab="Doğru yanıt olasılığı", col = "red",
       main="Madde-2 ICC") #ICC:Item Characteristic Curve
plot(theta, P_result_1[,6], type="l", xlim=c(-4,4), ylim=c(0,1),
  xlab="Theta", ylab="Doğru yanıt olasılığı", col = "purple",
   main="Madde-6 ICC")
plot(theta, P_result_1[,14], type="l", xlim=c(-4,4), ylim=c(0,1),
   xlab="Theta", ylab="Doğru yanıt olasılığı", col = "navy",
       main="Madde-14 ICC")
plot(theta, I_result_1[,2], type="l", xlim=c(-4,4),
   xlab="Theta", ylab="Blgi", col = "purple",
       main="Madde-2 IIC") #IIC:Item Information Curve
plot(theta, I_result_1[,6], type="l", xlim=c(-4,4),
   xlab="Theta", ylab="Blgi", col = "red",
       main="Madde-6 IIC")
plot(theta, I_result_1[,14], type="l", xlim=c(-4,4),
   xlab="Theta", ylab="Blgi", col = "navy",
       main="Madde-14 IIC")
```


Son olarak, tüm test için madde bilgi fonksiyonları toplayarak test bilgi fonksiyonunu elde edebilir ve grafiğini çizdirebiliriz. Grafiğe standart hatayı da ekleyebiliriz.

İki Parametreli Lojistik (2PL) Model Hesaplamaları ve Grafikleri

Veri, Analiz ve Sonuçlar

Bu analizde kullanılan "itempar_2PL.txt" adlı veri, bir önceki adımda kestirilen madde parametrelerinin txt formatında kaydedilmiş versiyonlarıdır. Veriyi programa okutmak ve bir öncekia dımdaki analizleri tekrarlamak için aşağıdaki komutlar girilerek komutları çalıştırabiliriz. Sonuçları ilk adımdan farklı şekilde kaydedebiliriz.

```
#çalışma klasörü oluşturmak için#
setwd("C:/Users/Derya/Desktop/MTK-2 Çalışma Paketi-2")
#veri = 2PL için kestirilen a ve b parametreleri
itempar_2PL <- data.matrix(read.table("itempar_2PL.txt", header = FALSE))
#veriyle ilgili tanımlamalar
a<-cbind(itempar_2PL[,1]) #a (ayırıcılık)parametresi
b<-cbind(itempar_2PL[,2]) #b (güçlük) parametresi
g<-cbind(itempar_2PL[,3]) #c (sans, tahmin) parametresi
k<-21 #madde sayısı
theta <- seq(-4, 4, length = 81) #-4,+4 aralığında 81 noktaya bölünmüş theta değerleri
D<- -1.702 #formüldeki D sabiti
#elde ettiğimiz sonuçları yazdırmak için satırlat theta, sütunlar maddeler olacak şekilde
P result 2 < -matrix(c(rep(0, length(theta)*k)), length(theta), k))
Q_result_2<-matrix(c(rep(0,length(theta)*k)),length(theta),k)
I_result_2<-matrix(c(rep(0,length(theta)*k)),length(theta),k)
#tüm maddeler için p, q ve I
t <- length(b)
for(t in 1:t){
 p \le g[t] + (1 - g[t]) * (1/(1 + exp(D * a[t] * (theta - b[t]))))
 P_{result_2}[,t] <- round(p,3)
 q <- 1-p
 Q_result_2 [,t] <- round(q,3)
 I_item <- (a[t]^2)^*(q/p)^*(((p - g[t])/(1 - g[t]))^2)
 I_result_2 [,t] <- round(I_item, 3)
plot(theta, P_result_2[,2], type="l", xlim=c(-4,4), ylim=c(0,1),
   xlab="Theta", ylab="Doğru yanıt olasılığı", col = "red",
       main="Madde-2 ICC")
plot(theta, P_result_2[,6], type="l", xlim=c(-4,4), ylim=c(0,1),
   xlab="Theta", ylab="Doğru yanıt olasılığı", col = "purple",
   main="Madde-6 ICC")
plot(theta, P_result_2[,14], type="l", xlim=c(-4,4), ylim=c(0,1),
   xlab="Theta", ylab="Doğru yanıt olasılığı", col = "navy",
       main="Madde-14 ICC")
plot(theta, I_result_2[,2], type="l", xlim=c(-4,4), ylim=c(0,0.12), #0.12 aralığı bu maddelere göre seçilmiştir
   xlab="Theta", ylab="Blgi", col = "purple",
       main="Madde-2 IIC")
plot(theta, I_result_2[,6], type="l", xlim=c(-4,4), ylim=c(0,0.12),
   xlab="Theta", ylab="Blgi", col = "red",
       main="Madde-6 IIC")
plot(theta, I_result_2[,14], type="1", xlim=c(-4,4),ylim=c(0,0.12),
   xlab="Theta", ylab="Blgi", col = "navy",
       main="Madde-14 IIC")
```


Yukarıda verilen grafikler, 1PL ile kestirilen madde paramterleri kullanılarak çizdirilen grafiklere benzemektedir ancak bu bölümde a parametresi maddeler arası farklılık gösterdiğinden grafiklerde bazı farklılıklar bulunmaktadır. Son olarak, tüm test için madde bilgi fonksiyonlarını toplayarak test bilgi fonksiyonunu elde edebilir ve grafiğini çizdirebiliriz. Grafiğe standart hatayı da ekleyebiliriz.

plot(theta, I_test, type="l", xlim=c(-4,4), xlab="Theta", ylab="Bilgi", main="Test Bilgi Eğrisi") lines(theta, SE, type = "l", lty = 2)

