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Preface
Welcome to Introduction to Data Science! This book began as the key
ingredient to one of those massive open online courses, or MOOCs, and
was written from the start to welcome people with a wide range of
backgrounds into the world of data science. In the years following the
MOOC we kept looking for, but never found, a better textbook to help our
students learn the fundamentals of data science. Instead, over time, we kept
refining and improving the book such that it has now become in integrated
part of how we teach data science.
In that welcoming spirit, the book assumes no previous computer
programming experience, nor does it require that students have a deep
understanding of statistics. We have successfully used the book for both
undergraduate and graduate level introductory courses. By using the free
and open source R platform (R Core Team, 2016) as the basis for this book,
we have also ensured that virtually everyone has access to the software
needed to do data science. Even though it takes a while to get used to the R
command line, our students have found that it opens up great opportunities
to them, both academically and professionally.
In the pages that follow, we explain how to do data science by using R to
read data sets, clean them up, visualize what’s happening, and perform
different modeling techniques on the data. We explore both structured and
unstructured data. The book explains, and we provide via an online
repository, all the commands that teachers and learners need to do a wide
range of data science tasks.
If your goal is to consider the whole book in the span of 14 or 15 weeks,
some of the earlier chapters can be grouped together or made optional for
those learners with good working knowledge of data concepts. This
approach allows an instructor to structure a semester so that each week of a
course can cover a different chapter and introduce a new data science
concept.
Many thanks to Leah Fargotstein, Yvonne McDuffee, and the great team of
folks at Sage Publications, who helped us turn our manuscript into a
beautiful, professional product. We would also like to acknowledge our
colleagues at the Syracuse University School of Information Studies, who



have been very supportive in helping us get student feedback to improve
this book. Go iSchool!
There were a number of reviewers we would like to thank who provided
extremely valuable feedback during the development of the manuscript:

Luis F. Alvarez Leon, University of Southern California
Youngseek Kim, University of Kentucky
Nir Kshetri, UNC Greensboro
Richard N. Landers, Old Dominion University
John W. Mohr, University of California, Santa Barbara
Ryan T. Moore, American University and The Lab @ DC
Fred Oswald, Rice University
Eliot Rich, University at Albany, State University of New York
Ansaf Salleb-Aouissi, Columbia University
Toshiyuki Yuasa, University of Houston
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Introduction Data Science, Many Skills

©iStockphoto.com/SpiffyJ

Learning Objectives
Articulate what data science is.
Understand the steps, at a high level, of doing data science.
Describe the roles and skills of a data scientist.

What Is Data Science?
For some, the term data science evokes images of statisticians in white lab
coats staring fixedly at blinking computer screens filled with scrolling
numbers. Nothing could be farther from the truth. First, statisticians do not



wear lab coats: this fashion statement is reserved for biologists, physicians,
and others who have to keep their clothes clean in environments filled with
unusual fluids. Second, much of the data in the world is non-numeric and
unstructured. In this context, unstructured means that the data are not
arranged in neat rows and columns. Think of a web page full of
photographs and short messages among friends: very few numbers to work
with there. While it is certainly true that companies, schools, and
governments use plenty of numeric information—sales of products, grade
point averages, and tax assessments are a few examples—there is lots of
other information in the world that mathematicians and statisticians look at
and cringe. So, while it is always useful to have great math skills, there is
much to be accomplished in the world of data science for those of us who
are presently more comfortable working with words, lists, photographs,
sounds, and other kinds of information.
In addition, data science is much more than simply analyzing data. There
are many people who enjoy analyzing data and who could happily spend all
day looking at histograms and averages, but for those who prefer other
activities, data science offers a range of roles and requires a range of skills.
Let’s consider this idea by thinking about some of the data involved in
buying a box of cereal.
Whatever your cereal preferences—fruity, chocolaty, fibrous, or nutty—you
prepare for the purchase by writing “cereal” on your grocery list. Already
your planned purchase is a piece of data, also called a datum, albeit a pencil
scribble on the back on an envelope that only you can read. When you get
to the grocery store, you use your datum as a reminder to grab that jumbo
box of FruityChocoBoms off the shelf and put it in your cart. At the
checkout line, the cashier scans the barcode on your box, and the cash
register logs the price. Back in the warehouse, a computer tells the stock
manager that it is time to request another order from the distributor, because
your purchase was one of the last boxes in the store. You also have a
coupon for your big box, and the cashier scans that, giving you a
predetermined discount. At the end of the week, a report of all the scanned
manufacturer coupons gets uploaded to the cereal company so they can
issue a reimbursement to the grocery store for all of the coupon discounts
they have handed out to customers. Finally, at the end of the month a store
manager looks at a colorful collection of pie charts showing all the different



kinds of cereal that were sold and, on the basis of strong sales of fruity
cereals, decides to offer more varieties of these on the store’s limited shelf
space next month.
So the small piece of information that began as a scribble on your grocery
list ended up in many different places, most notably on the desk of a
manager as an aid to decision making. On the trip from your pencil to the
manager’s desk, the datum went through many transformations. In addition
to the computers where the datum might have stopped by or stayed on for
the long term, lots of other pieces of hardware—such as the barcode
scanner—were involved in collecting, manipulating, transmitting, and
storing the datum. In addition, many different pieces of software were used
to organize, aggregate, visualize, and present the datum. Finally, many
different human systems were involved in working with the datum. People
decided which systems to buy and install, who should get access to what
kinds of data, and what would happen to the data after its immediate
purpose was fulfilled. The personnel of the grocery chain and its partners
made a thousand other detailed decisions and negotiations before the
scenario described earlier could become reality.
The Steps in Doing Data Science
Obviously, data scientists are not involved in all of these steps. Data
scientists don’t design and build computers or barcode readers, for instance.
So where would the data scientists play the most valuable role? Generally
speaking, data scientists play the most active roles in the four As of data:
data architecture, data acquisition, data analysis, and data archiving. Using
our cereal example, let’s look at these roles one by one. First, with respect
to architecture, it was important in the design of the point-of-sale system
(what retailers call their cash registers and related gear) to think through in
advance how different people would make use of the data coming through
the system. The system architect, for example, had a keen appreciation that
both the stock manager and the store manager would need to use the data
scanned at the registers, albeit for somewhat different purposes. A data
scientist would help the system architect by providing input on how the data
would need to be routed and organized to support the analysis,
visualization, and presentation of the data to the appropriate people.



Next, acquisition focuses on how the data are collected, and, importantly,
how the data are represented prior to analysis and presentation. For
example, each barcode represents a number that, by itself, is not very
descriptive of the product it represents. At what point after the barcode
scanner does its job should the number be associated with a text description
of the product or its price or its net weight or its packaging type? Different
barcodes are used for the same product (e.g., for different sized boxes of
cereal). When should we make note that purchase X and purchase Y are the
same product, just in different packages? Representing, transforming,
grouping, and linking the data are all tasks that need to occur before the
data can be profitably analyzed, and these are all tasks in which the data
scientist is actively involved.
The analysis phase is where data scientists are most heavily involved. In
this context, we are using analysis to include summarization of the data,
using portions of data (samples) to make inferences about the larger
context, and visualization of the data by presenting it in tables, graphs, and
even animations. Although there are many technical, mathematical, and
statistical aspects to these activities, keep in mind that the ultimate audience
for data analysis is always a person or people. These people are the data
users, and fulfilling their needs is the primary job of a data scientist. This
point highlights the need for excellent communication skills in data science.
The most sophisticated statistical analysis ever developed will be useless
unless the results can be effectively communicated to the data user.
Finally, the data scientist must become involved in the archiving of the data.
Preservation of collected data in a form that makes it highly reusable—what
you might think of as data curation—is a difficult challenge because it is so
hard to anticipate all of the future uses of the data. For example, when the
developers of Twitter were working on how to store tweets, they probably
never anticipated that tweets would be used to pinpoint earthquakes and
tsunamis, but they had enough foresight to realize that geocodes—data that
show the geographical location from which a tweet was sent—could be a
useful element to store with the data.
The Skills Needed to Do Data Science
All in all, our cereal box and grocery store example helps to highlight
where data scientists get involved and the skills they need. Here are some of



the skills that the example suggested:
Learning the application domain: The data scientist must quickly learn
how the data will be used in a particular context.
Communicating with data users: A data scientist must possess strong
skills for learning the needs and preferences of users. The ability to
translate back and forth between the technical terms of computing and
statistics and the vocabulary of the application domain is a critical
skill.
Seeing the big picture of a complex system: After developing an
understanding of the application domain, the data scientist must
imagine how data will move around among all of the relevant systems
and people.
Knowing how data can be represented: Data scientists must have a
clear understanding about how data can be stored and linked, as well
as about metadata (data that describe how other data are arranged).
Data transformation and analysis: When data become available for the
use of decision makers, data scientists must know how to transform,
summarize, and make inferences from the data. As noted earlier, being
able to communicate the results of analyses to users is also a critical
skill here.
Visualization and presentation: Although numbers often have the edge
in precision and detail, a good data display (e.g., a bar chart) can often
be a more effective means of communicating results to data users.
Attention to quality: No matter how good a set of data might be, there
is no such thing as perfect data. Data scientists must know the
limitations of the data they work with, know how to quantify its
accuracy, and be able to make suggestions for improving the quality of
the data in the future.
Ethical reasoning: If data are important enough to collect, they are
often important enough to affect people’s lives. Data scientists must
understand important ethical issues such as privacy, and must be able
to communicate the limitations of data to try to prevent misuse of data
or analytical results.

The skills and capabilities noted earlier are just the tip of the iceberg, of
course, but notice what a wide range is represented here. While a keen
understanding of numbers and mathematics is important, particularly for



data analysis, the data scientist also needs to have excellent communication
skills, be a great systems thinker, have a good eye for visual displays, and
be highly capable of thinking critically about how data will be used to make
decisions and affect people’s lives. Of course, there are very few people
who are good at all of these things, so some of the people interested in data
will specialize in one area, while others will become experts in another
area. This highlights the importance of teamwork, as well.
In this Introduction to Data Science book, a series of data problems of
increasing complexity is used to illustrate the skills and capabilities needed
by data scientists. The open source data analysis program known as R and
its graphical user interface companion RStudio are used to work with real
data examples to illustrate both the challenges of data science and some of
the techniques used to address those challenges. To the greatest extent
possible, real data sets reflecting important contemporary issues are used as
the basis of the discussions.
Note that the field of big data is a very closely related area of focus. In
short, big data is data science that is focused on very large data sets. Of
course, no one actually defines a “very large data set,” but for our purposes
we define big data as trying to analyze data sets that are so large that one
cannot use RStudio. As an example of a big data problem to be solved,
Macy’s (an online and brick-and-mortar retailer) adjusts its pricing in near
real time for 73 million items, based on demand and inventory
(http://searchcio.techtarget.com/opinion/Ten-big-data-case-studies-in-a-
nutshell). As one might guess, the amount of data and calculations required
for this type of analysis is too large for one computer running RStudio.
However, the techniques covered in this book are conceptually similar to
how one would approach the Macy’s challenge and the final chapter in the
book provides an overview of some big data concepts.
Of course, no one book can cover the wide range of activities and
capabilities involved in a field as diverse and broad as data science.
Throughout the book references to other guides and resources provide the
interested reader with access to additional information. In the open source
spirit of R and RStudio these are, wherever possible, web-based and free. In
fact, one of guides that appears most frequently in these pages is Wikipedia,
the free, online, user-sourced encyclopedia. Although some teachers and
librarians have legitimate complaints and concerns about Wikipedia, and it
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is admittedly not perfect, it is a very useful learning resource. Because it is
free, because it covers about 50 times more topics than a printed
encyclopedia, and because it keeps up with fast-moving topics (such as data
science) better than printed sources, Wikipedia is very useful for getting a
quick introduction to a topic. You can’t become an expert on a topic by
consulting only Wikipedia, but you can certainly become smarter by
starting there.
Another very useful resource is Khan Academy. Most people think of Khan
Academy as a set of videos that explain math concepts to middle and high
school students, but thousands of adults around the world use Khan
Academy as a refresher course for a range of topics or as a quick
introduction to a topic that they never studied before. All the lessons at
Khan Academy are free, and if you log in with a Google or Facebook
account you can do exercises and keep track of your progress.
While Wikipedia and Khan Academy are great resources, there are many
other resources available to help one learn data science. So, at the end of
each chapter of this book is a list of sources. These sources provide a great
place to start if you want to learn more about any of the topics the chapter
does not explain in detail.
It is valuable to have access to the Internet while you are reading so that
you can follow some of the many links this book provides. Also, as you
move into the sections in the book where open source software such as the
R data analysis system is used, you will sometimes need to have access to a
desktop or laptop computer where you can run these programs.
One last thing: The book presents topics in an order that should work well
for people with little or no experience in computer science or statistics. If
you already have knowledge, training, or experience in one or both of these
areas, you should feel free to skip over some of the introductory material
and move right into the topics and chapters that interest you most.

Sources
http://en.wikipedia.org/wiki/E-Science
http://en.wikipedia.org/wiki/E-Science_librarianship
http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Visualization_(computer_graphics)

http://en.wikipedia.org/wiki/E-Science
http://en.wikipedia.org/wiki/E-Science_librarianship
http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Visualization_(computer_graphics)
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http://readwrite.com/2011/09/07/unlocking-big-data-with-r/
http://rstudio.org/
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1 About Data
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Learning Objectives
Understand the most granular representation of data within a
computer.
Describe what a data set is.
Explain some basic R functions to build a data set.

The inventor of the World Wide Web, Sir Tim Berners-Lee, is often quoted
as having said, “Data is not information, information is not knowledge,
knowledge is not understanding, understanding is not wisdom,” but this
quote is actually from Clifford Stoll, a well-known cyber sleuth.
The quote suggests a kind of pyramid, where data are the raw materials that
make up the foundation at the bottom of the pile, and information,
knowledge, understanding, and wisdom represent higher and higher levels
of the pyramid. In one sense, the major goal of a data scientist is to help
people to turn data into information and onward up the pyramid. Before



getting started on this goal, though, it is important to have a solid sense of
what data actually are. (Notice that this book uses “data” as a plural noun.
In common usage, you might hear “data” as both singular and plural.) If
you have studied computer science or mathematics, you might find the
discussion in this chapter somewhat redundant, so feel free to skip it.
Otherwise, read on for an introduction to the most basic ingredient to the
data scientist’s efforts: data.
A substantial amount of what we know and say about data in the present
day comes from work by a U.S. mathematician named Claude Shannon.
Shannon worked before, during, and after World War II on a variety of
mathematical and engineering problems related to data and information.
Not to go crazy with quotes or anything, but Shannon is quoted as having
said, “The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point”
(http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pd
f, 1). This quote helpfully captures key ideas about data that are important
in this book by focusing on the idea of data as a message that moves from a
source to a recipient. Think about the simplest possible message that you
could send to another person over the phone, via a text message, or even in
person. Let’s say that a friend had asked you a question, for example,
whether you wanted to come to her house for dinner the next day. You can
answer yes or no. You can call the person on the phone and say yes or no.
You might have a bad connection, though, and your friend might not be able
to hear you. Likewise, you could send her a text message with your answer,
yes or no, and hope that she has her phone turned on so she can receive the
message. Or you could tell your friend face-to-face and hope that she does
not have her earbuds turned up so loud that she couldn’t hear you. In all
three cases, you have a one-bit message that you want to send to your
friend, yes or no, with the goal of reducing her uncertainty about whether
you will appear at her house for dinner the next day. Assuming that
message gets through without being garbled or lost, you will have
successfully transmitted one bit of information from you to her. Claude
Shannon developed some mathematics, now often referred to as
Information Theory, that carefully quantified how bits of data transmitted
accurately from a source to a recipient can reduce uncertainty by providing
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information. A great deal of the computer networking equipment and
software in the world today—and especially the huge linked worldwide
network we call the Internet—is primarily concerned with this one basic
task of getting bits of information from a source to a destination.
Storing Data—Using Bits and Bytes
Once we are comfortable with the idea of a bit as the most basic unit of
information, either “yes” or “no,” we can combine bits to make more-
complicated structures. First, let’s switch labels just slightly. Instead of “no”
we will start using zero, and instead of “yes” we will start using one. So we
now have a single digit, albeit one that has only two possible states: zero or
one (we’re temporarily making a rule against allowing any of the bigger
digits like three or seven). This is in fact the origin of the word bit, which is
a squashed down version of the phrase Binary digIT. A single binary digit
can be zero (0) or one (1), but there is nothing stopping us from using more
than one binary digit in our messages. Have a look at the example in the
table below:

Here we have started to use two binary digits—two bits—to create a code
book for four different messages that we might want to transmit to our
friend about her dinner party. If we were certain that we would not attend,
we would send her the message 0 0. If we definitely planned to attend, we
would send her 1 1. But we have two additional possibilities, “maybe,”
which is represented by 0 1, and “probably,” which is represented by 1 0. It
is interesting to compare our original yes/no message of one bit with this
new four-option message with two bits. In fact, every time you add a new
bit you double the number of possible messages you can send. So three bits



would give 8 options and four bits would give 16 options. How many
options would there be for five bits?
When we get up to eight bits—which provides 256 different combinations
—we finally have something of a reasonably useful size to work with. Eight
bits is commonly referred to as a “byte”—this term probably started out as a
play on words with the word bit. (Try looking up the word nybble online!)
A byte offers enough different combinations to encode all of the letters of
the alphabet, including capital and small letters. There is an old rulebook
called ASCII—the American Standard Code for Information Interchange—
which matches up patterns of eight bits with the letters of the alphabet,
punctuation, and a few other odds and ends. For example, the bit pattern
0100 0001 represents the capital letter A and the next higher pattern, 0100
0010, represents capital B. Try looking up an ASCII table online (e.g.,
http://www.asciitable.com/) and you can find all of the combinations. Note
that the codes might not actually be shown in binary because it is so
difficult for people to read long strings of ones and zeroes. Instead, you
might see the equivalent codes shown in hexadecimal (base 16), octal (base
8), or the most familiar form that we all use every day, base 10. Although
you might remember base conversions from high school math class, it
would be a good idea to practice this—particularly the conversions between
binary, hexadecimal, and decimal (base 10). You might also enjoy Vi Hart’s
Binary Hand Dance video at Khan Academy (search for this at
http://www.khanacademy.org or follow the link at the end of the chapter).
Most of the work we do in this book will be in decimal, but more-complex
work with data often requires understanding hexadecimal and being able to
know how a hexadecimal number, like 0xA3, translates into a bit pattern.
Try searching online for “binary conversion tutorial” and you will find lots
of useful sites.
Combining Bytes into Larger Structures
Now that we have the idea of a byte as a small collection of bits (usually
eight) that can be used to store and transmit things like letters and
punctuation marks, we can start to build up to bigger and better things.
First, it is very easy to see that we can put bytes together into lists in order
to make a string of letters, often referred to as a character string or text
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string. If we have a piece of text, like “this is a piece of text,” we can use a
collection of bytes to represent it like this:

0111010001101000011010010111001100100000011010010111001100
100000011000010010000001110000011010010110010101100011011
0010100100000011011110110011000100000011101000110010101111
00001110100

Now nobody wants to look at that, let alone encode or decode it by hand,
but fortunately, the computers and software we use these days takes care of
the conversion and storage automatically. For example, we can tell the open
source data language R to store “this is a piece of text” for us like this:

> myText <- “this is a piece of text”
We can be certain that inside the computer there is a long list of zeroes and
ones that represent the text that we just stored. By the way, in order to be
able to get our piece of text back later on, we have made a kind of storage
label for it (the word “myText” above). Anytime that we want to remember
our piece of text or use it for something else, we can use the label myText to
open up the chunk of computer memory where we have put that long list of
binary digits that represent our text. The left-pointing arrow made up out of
the less-than character (<) and the dash character (–) gives R the command
to take what is on the right-hand side (the quoted text) and put it into what
is on the left-hand side (the storage area we have labeled myText). Some
people call this the assignment arrow, and it is used in some computer
languages to make it clear to the human who writes or reads it which
direction the information is flowing. Yay! We just explored our first line of
R code. But don’t worry about actually writing code just yet: We will
discuss installing R and writing R code in Chapter 3.
From the computer’s standpoint, it is even simpler to store, remember, and
manipulate numbers instead of text. Remember that an eight-bit byte can
hold 256 combinations, so just using that very small amount we could store
the numbers from 0 to 255. (Of course, we could have also done 1 to 256,
but much of the counting and numbering that goes on in computers starts
with zero instead of one.) Really, though, 255 is not much to work with. We
couldn’t count the number of houses in most towns or the number of cars in
a large parking garage unless we can count higher than 255. If we put
together two bytes to make 16 bits we can count from zero up to 65,535, but
that is still not enough for some of the really big numbers in the world today



(e.g., there are more than 200 million cars in the United States alone). Most
of the time, if we want to be flexible in representing an integer (a number
with no decimals), we use four bytes stuck together. Four bytes stuck
together is a total of 32 bits, and that allows us to store an integer as high as
4,294,967,295.
Things get slightly more complicated when we want to store a negative
number or a number that has digits after the decimal point. If you are
curious, try looking up “two’s complement” for more information about
how signed numbers are stored and “floating point” for information about
how numbers with digits after the decimal point are stored. For our
purposes in this book, the most important thing to remember is that text is
stored differently than numbers, and among numbers integers are stored
differently than floating point. Later we will find that it is sometimes
necessary to convert between these different representations, so it is always
important to know how it is represented.
So far, we have mainly looked at how to store one thing at a time, like one
number or one letter, but when we are solving problems with data we often
need to store a group of related things together. The simplest place to start is
with a list of things that are all stored in the same way. For example, we
could have a list of integers, where each thing in the list is the age of a
person in your family. The list might look like this: 43, 42, 12, 8, 5. The
first two numbers are the ages of the parents and the last three numbers are
the ages of the kids. Naturally, inside the computer each number is stored in
binary, but fortunately we don’t have to type them in that way or look at
them that way. Because there are no decimal points, these are just plain
integers and a 32-bit integer (4 bytes) is more than enough to store each
one. This list contains items that are all the same type or mode.
Creating a Data Set in R
The open source data program R refers to a list where all of the items are of
the same mode as a vector. We can create a vector with R very easily by
listing the numbers, separated by commas and inside parentheses:

> c(43, 42, 12, 8, 5)
The letter c in front of the opening parenthesis stands for combine, which
means to join things together. Slightly obscure, but easy enough to get used
to with some practice. We can also put in some of what we learned earlier to



store our vector in a named location (remember that a vector is list of items
of the same mode/type):

> myFamilyAges <- c(43, 42, 12, 8, 5)
We have just created our first data set. It is very small, for sure, only five
items, but it is also very useful for illustrating several major concepts about
data. Here’s a recap:

In the heart of the computer, all data are represented in binary. One
binary digit, or bit, is the smallest chunk of data that we can send from
one place to another.
Although all data are at heart binary, computers and software help to
represent data in more convenient forms for people to see. Three
important representations are “character” for representing text,
“integer” for representing numbers with no digits after the decimal
point, and “floating point” for numbers that might have digits after the
decimal point. The numbers in our tiny data set just above are integers.
Numbers and text can be collected into lists, which the open source
program R calls vectors. A vector has a length, which is the number of
items in it, and a mode which is the type of data stored in the vector.
The vector we were just working on has a length of five and a mode of
integer.
In order to be able to remember where we stored a piece of data, most
computer programs, including R, give us a way of labeling a chunk of
computer memory. We chose to give the five-item vector up above the
name myFamilyAges. Some people might refer to this named list as a
variable because the value of it varies, depending on which member of
the list you are examining.
If we gather together one or more variables into a sensible group, we
can refer to them together as a data set. Usually, it doesn’t make sense
to refer to something with just one variable as a data set, so usually we
need at least two variables. Technically, though, even our very simple
myFamilyAges counts as a data set, albeit a very tiny one.

Later in the book we will install and run the open source R data program
and learn more about how to create data sets, summarize the information in
those data sets, and perform some simple calculations and transformations
on those data sets.



Chapter Challenge
Discover the meaning of Boolean Logic and the rules for and,
or, not, and exclusive or. Once you have studied this for a while,
write down on a piece of paper, without looking, all the binary
operations that demonstrate these rules.

Sources
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Information_theory
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.khanacademy.org/math/vi-hart/v/binary-hand-dance
https://www.khanacademy.org/computing/computer-
programming/programming/variables/p/intro-to-variables
http://www.asciitable.com/

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Information_theory
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.khanacademy.org/math/vi-hart/v/binary-hand-dance
https://www.khanacademy.org/computing/computer-programming/programming/variables/p/intro-to-variables
http://www.asciitable.com/


2 Identifying Data Problems
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Learning Objectives
Describe and assess possible strategies for problem
identification.
Explain how to leverage subject matter experts.
Examine and identify the exceptions.
Illustrate how data science might be useful.



Apple farmers live in constant fear, first for their blossoms and later for
their fruit. A late spring frost can kill the blossoms. Hail or extreme wind in
the summer can damage the fruit. More generally, farming is an activity that
is first and foremost in the physical world, with complex natural processes
and forces, like weather, that are beyond the control of humankind.
In this highly physical world of unpredictable natural forces, is there any
role for data science? On the surface, there does not seem to be. But how
can we know for sure? Having a nose for identifying data problems requires
openness, curiosity, creativity, and a willingness to ask a lot of questions. In
fact, if you took away from the first chapter the impression that a data
scientist sits in front of a computer all day and works a crazy program like
R, that is a mistake. Every data scientist must (eventually) become
immersed in the problem domain where she is working. The data scientist
might never actually become a farmer, but if you are going to identify a data
problem that a farmer has, you have to learn to think like a farmer, to some
degree.
Talking to Subject Matter Experts
To get this domain knowledge you can read or watch videos, but the best
way is to ask subject matter experts (in this case farmers) about what they
do. The whole process of asking questions deserves its own treatment, but
for now there are three things to think about when asking questions. First,
you want the subject matter experts, or SMEs, as they are sometimes called,
to tell stories of what they do. Then you want to ask them about anomalies:
the unusual things that happen for better or for worse. Finally, you want to
ask about risks and uncertainty: About the situations where it is hard to tell
what will happen next, when what happens next could have a profound
effect on whether the situation ends badly or well. Each of these three areas
of questioning reflects an approach to identifying data problems that might
turn up something good that could be accomplished with data, information,
and the right decision at the right time.
The purpose of asking about stories is that people mainly think in stories.
From farmers to teachers to managers to CEOs, people know and tell stories
about success and failure in their particular domain. Stories are powerful
ways of communicating wisdom between different members of the same
profession and they are ways of collecting a sense of identity that sets one



profession apart from another profession. The only problem is that stories
can be wrong.
If you can get a professional to tell the main stories that guide how she
conducts her work, you can then consider how to verify those stories.
Without questioning the veracity of the person that tells the story, you can
imagine ways of measuring the different aspects of how things happen in
the story with an eye toward eventually verifying (or sometimes debunking)
the stories that guide professional work.
For example, the farmer might say that in the deep spring frost that
occurred five years ago, the trees in the hollow were spared frost damage
while the trees around the ridge of the hill had frost damage. For this
reason, on a cold night the farmer places most of the smudge pots
(containers that hold a fuel that creates a smoky fire) around the ridge. The
farmer strongly believes that this strategy works, but does it? It would be
possible to collect time-series temperature data from multiple locations
within the orchard, on cold and warm nights, and on nights with and
without smudge pots. The data could be used to create a model of
temperature changes in the different areas of the orchard, and this model
could support, improve, or debunk the story. Of course, just as the story
could be wrong, we also have to keep in mind that the data might be wrong.
For example, a thermometer might not be calibrated correctly and, hence,
would provide incorrect temperature data.
In summary, there is no one correct way of understanding and representing
the situation that is inherently more truthful than others. We have to develop
a critical lens to be able to assess the possible situations when information
might be correct or incorrect.
Looking for the Exception
A second strategy for problem identification is to look for the exception
cases, both good and bad. A little later in the book we will learn about how
the core of classic methods of statistical inference is to characterize the
center—the most typical cases that occur—and then examine the extreme
cases that are far from the center for information that could help us
understand an intervention or an unusual combination of circumstances.
Identifying unusual cases is a powerful way of understanding how things
work, but it is necessary first to define the central or most typical



occurrences in order to have an accurate idea of what constitutes an unusual
case.
Coming back to our farmer friend, in advance of a thunderstorm late last
summer a powerful wind came through the orchard, tearing the fruit off the
trees. Most of the trees lost a small amount of fruit: The dropped apples
could be seen near the base of the trees. One small grouping of trees seemed
to lose a much larger amount of fruit, however, and the drops were
apparently scattered much farther from the trees. Is it possible that some
strange wind conditions made the situation worse in this one spot? Or is it
just a matter of chance that a few trees in the same area all lost more fruit
than would be typical?
A systematic count of lost fruit underneath a random sample of trees would
help to answer this question. The bulk of the trees would probably have
each lost about the same amount, but, more important, that typical group
would give us a yardstick against which we could determine what would
really count as unusual. When we found an unusual set of cases that was
truly beyond the limits of typical, we could rightly focus our attention on
these to try to understand the anomaly.
Exploring Risk and Uncertainty
A third strategy for identifying data problems is to find out about risk and
uncertainty. If you read the previous chapter you might remember that a
basic function of information is to reduce uncertainty. It is often valuable to
reduce uncertainty because of how risk affects the things we all do. At
work, at school, and at home, life is full of risks: Making a decision or
failing to do so sets off a chain of events that could lead to something good
or something not so good. In general, we would like to narrow things down
in a way that maximizes the chances of a good outcome and minimizes the
chance of a bad one. To do this, we need to make better decisions, and to
make better decisions we need to reduce uncertainty. By asking questions
about risks and uncertainty (and decisions) a data scientist can zero in on
the problems that matter. You can even look at the previous two strategies—
asking about the stories that comprise professional wisdom and asking
about anomalies/unusual cases—in terms of the potential for reducing
uncertainty and risk.



In the case of the farmer, much of the risk comes from the weather, and the
uncertainty revolves around which countermeasures will be cost-effective
under prevailing conditions. Consuming lots of expensive oil in smudge
pots on a night that turns out to be quite warm is a waste of resources that
could make the difference between a profitable or an unprofitable year. So
more-precise and more-timely information about local weather conditions
might be a key focus area for problem-solving with data. What if a live
stream of national weather service Doppler radar could appear on the
farmer’s smartphone? The app could provide the predicted wind speed and
temperature for the farm in general. But, as this example has shown, it is
typically helpful to have more data. So, predicting the wind and temperature
across the different locations within the farm might be much more useful to
the farmer.
Of course, there are many other situations where data science (and big data
science) could prove useful. For example, banks have used data science for
many years to perform credit analysis for a consumer when they want to
take out a loan or obtain a credit card. As mentioned in the Macy’s
example, retailers have used data science to try to predict inventory and the
related concept of pricing their inventory. Online retailers can use data
science to cluster people so that the retailer can suggest a related product to
someone who liked a certain product (such as a movie). Finally, smart
devices can use data science to learn a person’s habits, such as a nest
thermostat that can predict when a person will be home or away. While it
would take an entire book to describe the many different situations where
data science has been or could be used, hopefully these examples give you a
feel for what is possible when data science is applied to real-world
challenges.
To recap, there are many different contexts in which a data scientist might
work and doing data science requires much more than sitting in front of a
computer and doing R coding. The data scientist needs to understand the
domain and data in that domain. Often the data scientist gets this knowledge
by talking to or observing SMEs. One strategy for problem identification is
to interact with an SME and get that person to tell a story about the
situation. A second strategy is to look for good and bad exceptions. Finally,
a third strategy is to explore risk and uncertainty.



Chapter Challenge
To help structure discussions with SMEs, an interview guide is
useful. Create an interview guide to ask questions of an SME.
Try to create one that is general purpose, and then refine it so
that you can use it for the farmer in the scenario in this chapter.

Sources
http://blog.elucidat.com/sme-ideas/
http://elearningindustry.com/working-subject-matter-experts-
ultimate-guide
http://info.shiftelearning.com/blog/communicating-with-smes-
elearning

http://blog.elucidat.com/sme-ideas/
http://elearningindustry.com/working-subject-matter-experts-ultimate-guide
http://info.shiftelearning.com/blog/communicating-with-smes-elearning


3 Getting Started with R
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Learning Objectives
Know how to install the R software package.
Gain familiarity with using the R command line.
Build vectors in R.

If you are new to computers, programming, and/or data science, welcome to
an exciting chapter that will open the door to the most powerful free data
analytics tool ever created anywhere in the universe, no joke. On the other
hand, if you are experienced with spreadsheets, statistical analysis, or
accounting software you are probably thinking that this book has now gone
off the deep end, never to return to sanity and all that is good and right in
user-interface design. Both perspectives are reasonable. The R open source
data analysis program is immensely powerful, flexible, and especially
extensible (meaning that people can create new capabilities for it quite
easily). At the same time, R is command-line oriented, meaning that most
of the work that one needs to perform is done through carefully crafted text



instructions, many of which have tricky syntax (the punctuation and related
rules for making a command that works). In addition, R is not especially
good at giving feedback or error messages that help the user to repair
mistakes or figure out what is wrong when results look funny.
But there is a method to the madness here. One of the virtues of R as a
teaching tool is that it hides very little. The successful user must fully
understand what the data situation is, or else the R commands will not
work. With a spreadsheet, it is easy to type in a lot of numbers and a
formula like =FORECAST() and a result pops into a cell like magic,
whether the calculation makes any sense or not. With R you have to know
your data, know what you can do with it, know how it has to be
transformed, and know how to check for problems. Because R is a
programming language, it also forces users to think about problems in terms
of data objects, methods that can be applied to those objects, and
procedures for applying those methods. These are important metaphors
used in modern programming languages, and no data scientist can succeed
without having at least a rudimentary understanding of how software is
programmed, tested, and integrated into working systems. The extensibility
of R means that new modules are being added all the time by volunteers: R
was among the first analysis programs to integrate capabilities for drawing
data directly from the Twitter(r) social media platform. So you can be sure
that, whatever the next big development is in the world of data, someone in
the R community will start to develop a new package for R that will make
use of it. Finally, the lessons we can learn by working with R are almost
universally applicable to other programs and environments. If you have
mastered R, it is a relatively small step to get the hang of the SAS(r)
statistical programming language and an even smaller step to being able to
follow SPSS(r) syntax. (SAS and SPSS are two of the most widely used
commercial statistical analysis programs.) So with no need for any licensing
fees paid by school, student, or teacher, it is possible to learn the most
powerful data analysis system in the universe and take those lessons with
you no matter where you go. It will take some patience though, so please
hang in there!
Installing R



Let’s get started. Obviously, you will need a computer. If you are working
on a tablet device or smartphone, you might want to skip forward to the
chapter on RStudio, because regular old R has not yet been reconfigured to
work on tablet devices (but there is a workaround for this that uses
RStudio). There are a few experiments with web-based interfaces to R, like
this one—http://www.r-fiddle.org, but they are still in a very early stage. If
your computer has the Windows(r), Mac-OS-X(r), or a Linux operating
system, there is a version of R waiting for you at http://cran.r-project.org/.
Download and install your own copy. If you sometimes have difficulties
with installing new software and you need some help, there is a wonderful
little book by Thomas P. Hogan called Bare-Bones R: A Brief Introductory
Guide (2017, Thousand Oaks, CA: SAGE) that you might want to buy or
borrow from your library. There are lots of sites online that also give help
with installing R, although many of them are not oriented toward the
inexperienced user. I searched online using the term “help installing R,” and
I got a few good hits. YouTube also had four videos that provide brief
tutorials for installing R. Try searching for “install R” in the YouTube
search box. The rest of this chapter assumes that you have installed R and
can run it on your computer as shown in the screenshot in Figure 3.1. (Note
that this screenshot is from the Mac version of R: if you are running
Windows or Linux your R screen could appear slightly different from this.)
Using R
The screenshot in Figure 3.1 shows a simple command to type that shows
the most basic method of interaction with R. Notice near the bottom of the
screenshot a greater - than (>) symbol. This is the command prompt: When
R is running and it is the active application on your desktop, if you type a
command it appears after the > symbol. If you press the enter or return key,
the command is sent to R for processing. When the processing is done, a
result will appear just under the >. When R is done processing, another
command prompt (>) appears and R is ready for your next command. In the
screenshot, the user has typed “1+1” and pressed the enter key. The formula
1+1 is used by elementary school students everywhere to insult each other’s
math skills, but R dutifully reports the result as 2. If you are a careful
observer, you will notice that just before the 2 there is a 1 in square
brackets, like this: [1]. That [1] is a line number that helps to keep track of

http://www.r-fiddle.org/
http://cran.r-project.org/


the results that R displays. Pretty pointless when only showing one line of
results, but R likes to be consistent, so we will see quite a lot of those
numbers in square brackets as we dig deeper.
Figure 3.1

Creating and Using Vectors
Remember the list of ages of family members from the About Data chapter?
No? Well, here it is again: 43, 42, 12, 8, 5, for Dad, Mom, Sis, Bro, and
Dog, respectively. We mentioned that this was a list of items, all of the
same mode, namely, an integer. Remember that you can tell that they are
OK to be integers because there are no decimal points and therefore nothing
after the decimal point. We can create a vector of integers in R using the c()
command. Take a look at the screenshot in Figure 3.2.
This is the last time that the whole screenshot from the R console will
appear in the book. From here on out we will just look at commands and
output so we don’t waste so much space on the page. The first command
line in the screenshot is exactly what appeared in an earlier chapter:



Figure 3.2

> c(43, 42, 12, 8, 5)
As you can see, when we show a short snippet of code we will make blue
and bold what we type, and not blue and bold what R is generating. So, in
the preceding example, R generated the >, and then we typed c(43, 42, 12,
8, 5). You don’t need to type the > because R provides it whenever it is
ready to receive new input. From now on in the book, there will be
examples of R commands and output that are mixed together, so always be
on the lookout for > because the command after that is what you have to
type. Also notice that the output is in black (as opposed to our code that is
shown in blue).
You might notice that on the following line in the screenshot R dutifully
reports the vector that you just typed. After the line number [1], we see the
list 43, 42, 12, 8, and 5. This is because R echoes this list back to us,
because we didn’t ask it to store the vector anywhere. In the rest of the
book, we will show that output from R as follows:

[1] 43, 42, 12, 8, 5



Combining these two lines, our R console snippet would look as follows:
> c(43, 42, 12, 8, 5)
[1] 43, 42, 12, 8, 5

In contrast, the next command line (also the same as in the previous
chapter), says:

> myFamilyAges <- c(43, 42, 12, 8, 5)
We have typed in the same list of numbers, but this time we have assigned
it, using the left-pointing arrow, into a storage area that we have named
myFamilyAges. This time, R responds just with an empty command
prompt. That’s why the third command line requests a report of what
myFamilyAges contains. This is a simple but very important tool. Any time
you want to know what is in a data object in R, just type the name of the
object and R will report it back to you. In the next command, we begin to
see the power of R:

> sum(myFamilyAges)
[1] 110

This command asks R to add together all of the numbers in myFamilyAges,
which turns out to be 110 (you can check it yourself with a calculator if you
want). This is perhaps a weird thing to do with the ages of family members,
but it shows how with a very short and simple command you can unleash
quite a lot of processing on your data. In the next line (of the screenshot
image), we ask for the mean (what non-data people call the average) of all
of the ages, and this turns out to be 22 years. The command right afterward,
called range, shows the lowest and highest ages in the list. Finally, just for
fun, we tried to issue the command fish(myFamilyAges). Pretty much as
you might expect, R does not contain a fish() function, and so we received
an error message to that effect. This shows another important principle for
working with R: You can freely try things out at any time without fear of
breaking anything. If R can’t understand what you want to accomplish, or
you haven’t quite figured out how to do something, R will calmly respond
with an error message and will not make any other changes until you give it
a new command. The error messages from R are not always super helpful,
but with some strategies that the book will discuss in future chapters you
can break down the problem and figure out how to get R to do what you
want.



Finally, it’s important to remember that R is case sensitive. This means that
myFamilyAges is different from myFamilyages. In R, typing
myFamilyages, when we meant myFamilyAges, is treated the same as any
other typing error.

> myFamilyAges
[1] 43 42 12 8 5
> myFamilyages
Error: object ‘myFamilyages’ not found

Let’s take stock for a moment. First, you should definitely try all of the
commands noted above on your own computer. You can read about the
commands in this book all you want, but you will learn a lot more if you
actually try things out. Second, if you try a command that is shown in these
pages and it does not work for some reason, you should try to figure out
why. Begin by checking your spelling and punctuation, because R is very
persnickety about how commands are typed. Remember that capitalization
matters in R: myFamilyAges is not the same as myFamilyages. If you
verify that you have typed a command just as you see in the book and it still
does not work, try going online and looking for some help. There’s lots of
help at http://stackoverflow.com, at https://stat.ethz.ch, and also at
http://www.statmethods.net/. If you can figure out what went wrong on your
own you will probably learn something very valuable about working with
R. Third, you should take a moment to experiment with each new set of
commands that you learn. For example, just using the commands discussed
earlier in the chapter you could do this totally new thing:

> myRange <- range(myFamilyAges)
What would happen if you did that command and then typed “myRange”
(without the double quotes) on the next command line to report back what
is stored there? What would you see? Then think about how that worked
and try to imagine some other experiments that you could try. The more you
experiment on your own, the more you will learn. Some of the best stuff
ever invented for computers was the result of just experimenting to see
what was possible. At this point, with just the few commands that you have
already tried, you already know the following things about R (and about
data):

How to install R on your computer and run it.
How to type commands on the R console.

http://stackoverflow.com/
https://stat.ethz.ch/
http://www.statmethods.net/


The use of the c() function. Remember that c stands for combine,
which just means to join things together. You can put a list of items
inside the parentheses, separated by commas.
That a vector is pretty much the most basic form of data storage in R,
and that it consists of a list of items of the same mode.
That a vector can be stored in a named location using the assignment
arrow (a left pointing arrow made of a dash and a less-than symbol,
like this: <-).
That you can get a report of the data object that is in any named
location just by typing that name at the command line.
That you can run a function, such as mean(), on a vector of numbers to
transform them into something else. (The mean() function calculates
the average, which is one of the most basic numeric summaries there
is.)
That sum(), mean(), and range() are all legal functions in R whereas
fish() is not.
That R is case sensitive.

In the next chapter we will move forward a step or two by starting to work
with text and by combining our list of family ages with the names of the
family members and some other information about them.

Chapter Challenge
Using logic and online resources to get help if you need it, learn
how to use the c() function to add another family member’s age
on the end of the myFamilyAges vector.

Sources
http://a-little-book-of-r-for-biomedical-
statistics.readthedocs.org/en/latest/src/installr.html
http://cran.r-project.org/
http://www.r-fiddle.org (an experimental web interface to R)
http://en.wikibooks.org/wiki/R_Programming
https://plus.google.com/u/0/104922476697914343874/posts
(Jeremy Taylor’s blog: Stats Make Me Cry)
http://stackoverflow.com
https://stat.ethz.ch
http://www.statmethods.net/
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https://stat.ethz.ch/
http://www.statmethods.net/


4 Follow the Data
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Learning Objectives
Understand that data modeling is a technique for organizing
data.
Describe some simple data modeling techniques.
Explain why data scientists often have to understand data
models.



Hate to nag, but have you had a checkup lately? If you have been to the
doctor for any reason you might recall that the doctor’s office is awash with
data. First, the doctor has loads of digital sensors, everything from blood
pressure monitors to ultrasound machines, and all of these produce
mountains of data. Perhaps of greater concern in this era of debate about
health insurance, the doctor’s office is one of the big jumping-off points for
financial and insurance data. One of the notable features of the U.S. health-
care system is our most common method of health-care delivery: paying by
the procedure. When you undergo a procedure at the doctor’s office,
whether it is a consultation, an examination, a test, or something else, that
experience initiates a chain of data events with far-reaching consequences.
If your doctor is typical, the starting point of these events is a paper form.
Have you ever looked at one of these in detail? Most of the form will be
covered by a large matrix of procedures and codes. Although some of the
better-equipped places might use this form digitally on a tablet or other
computer, paper forms are still very common. Somewhere, either in the
doctor’s office or at an outsourced service company, the data on the paper
form are entered into a system that begins the insurance reimbursement
and/or billing process.
Understanding Existing Data Sources
Where do these procedure data go? What other kinds of data (such as
patient account information) might get attached to them in a subsequent
step? What kinds of networks do these linked data travel over, and what
kind of security do they have? How many steps are there in processing the
data before they arrive at the insurance company? How does the insurance
company process and analyze the data before issuing the reimbursement?
How is the money transmitted once the insurance company’s systems have
given approval to the reimbursement? These questions barely scratch the
surface: There are dozens or hundreds of processing steps that we haven’t
yet imagined.
It is easy to see from this example that the likelihood of being able to throw
it all out and start designing a better or at least more standardized system
from scratch is nil. But what if you had the job of improving the efficiency
of the system, or auditing the insurance reimbursements to make sure they
were compliant with insurance records, or using the data to detect and



predict outbreaks and epidemics, or providing feedback to consumers about
how much they can expect to pay out of pocket for various procedures?
The critical starting point for your project would be to follow the data. You
would need to be like a detective, finding out in a substantial degree of
detail the content, format, senders, receivers, transmission methods,
repositories, and users of data at each step in the process and at each
organization where the data are processed or housed.
Exploring Data Models
Fortunately, there is an extensive area of study and practice called data
modeling that provides theories, strategies, and tools to help with the data
scientist’s goal of following the data. These ideas started in earnest in the
1970s with the introduction by computer scientist Ed Yourdon of a
methodology called data flow diagrams. A more contemporary approach,
one that is strongly linked with the practice of creating relational databases,
is called the entity-relationship model. Professionals using this model
develop entity-relationship diagrams, sometimes called an ERD, that
describe the structure and movement of data in a system.
Entity-relationship modeling occurs at different levels ranging from an
abstract conceptual level to a physical storage level. At the conceptual level,
an entity is an object or thing, usually something in the real world. In the
doctor’s office example, one important entity or object is the patient, and
another is the doctor. The patient and the doctor are linked by a
relationship: In modern health-care lingo, this is the provider relationship. If
the patient is Mr. X and the doctor is Dr. Y, the provider relationship
provides a bidirectional link:

Dr. Y is the provider for Mr. X.
Mr. X’s provider is Dr. Y.

Naturally there is a range of data that can represent Mr. X: name address,
age, and so on. Likewise, there are data that represent Dr. Y: years of
experience as a doctor, specialty areas, certifications, licenses. Importantly,
there is also a chunk of data that represents the linkage between X and Y,
and this is the relationship.
Creating an entity-relationship diagram requires investigating and
enumerating all of the entities, such as patients and doctors, as well as all
the relationships that might exist among them. As the beginning of the



chapter suggested, this might have to occur across multiple organizations
(e.g., the doctor’s office and the insurance company), depending on the
purpose of the information system that is being designed. Eventually, the
entity-relationship diagrams must become detailed enough that they can
serve as a specification for the physical storage in a database.
In an application area like health care, there are so many choices for
different ways of designing the data that it requires some experience and
possibly some art to create a workable system. Part of the art lies in
understanding the users’ current information needs and anticipating how
those needs could change in the future. If an organization is redesigning a
system, adding to a system, or creating brand-new systems, they are doing
so in the expectation of a future benefit. This benefit might arise from
greater efficiency, a reduction of errors/inaccuracies, or the hope of
providing a new product or service with the enhanced information
capabilities.
Whatever the goal, the data scientist has an important and difficult
challenge of taking the methods of today—including paper forms and
manual data entry—and imagining the methods of tomorrow. Follow the
data!
You might be asking yourself, “What does this have to do with data
science?” As hinted at in this discussion, data scientists often do not define
what data should be collected at the start of the project. Rather, it is likely
that a data scientist will need to understand one or more existing systems.
Understanding and following the data, perhaps via the SME strategies
previously discussed combined with these data modeling concepts, enables
the data scientist to get the data. This is important because without the data,
there is no data science.
In the next chapter, we look at one of the most common and most useful
ways of organizing data, namely, in a rectangular structure that has rows
and columns. This rectangular arrangement of data appears in spreadsheets
and databases that are used for a variety of applications. Understanding how
these rows and columns are organized is critical to most tasks in data
science.

Chapter Challenge



Explain the strengths and weaknesses of using an entity
relationship diagram versus a data flow diagram. Provide one
example when an entity relationship diagram would be better,
and one example when a data flow diagram would be more
appropriate.

Sources
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Entity-relationship_diagram
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http://en.wikipedia.org/wiki/Entity-relationship_diagram


5 Rows and Columns
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Learning Objectives
Explain what a dataframe is and how data are organized in a
dataframe.
Create and use dataframes in R.
Access columns in a dataframe.
Gain experience using the following R functions: c, data.frame,
str, summary, head, tail.



Although we live in a three-dimensional world, where a box of cereal has
height, width, and depth, it is a sad fact of modern life that pieces of paper,
chalkboards, whiteboards, and computer screens are still only two
dimensional. As a result, most of the statisticians, accountants, computer
scientists, and engineers who work with lots of numbers tend to organize
them in rows and columns. There’s really no good reason for this other than
that it makes it easy to fill a rectangular piece of paper with numbers. Rows
and columns can be organized any way that you want, but the most
common way is to have the rows be cases or instances, and the columns be
attributes or variables. Take a look at the nice, two-dimensional
representation of rows and columns in Table 5.1:

Pretty obvious what’s going on, right? The top line, in bold, is not really
part of the data. Instead, the top line contains the attribute or variable
names. Note that computer scientists tend to call them attributes while
statisticians call them variables. Either term is OK. For example, age is an
attribute that every living thing has, and you could count it in minutes,
hours, days, months, years, or other units of time. Here we have the Age
attribute calibrated in years. Technically speaking, the variable names in the
top line are metadata, or what you could think of as data about data.
Imagine how much more difficult it would be to understand what was going
on in that table without the metadata. There’s lot of different kinds of
metadata: Variable names are just one simple type of metadata.
So if you ignore the top row, which contains the variable names, each of the
remaining rows is an instance or a case. Again, computer scientists might



call them instances, and statisticians might call them cases, but either term
is fine. The important thing is that each row refers to an actual thing. In this
case, all of our things are living creatures in a family. You could think of the
Name column as case labels, in that each of these labels refers to one and
only one row in our data. Most of the time when you are working with a
large data set, there is a number used for the case label, and that number is
unique for each case (i.e., the same number would never appear in more
than one row). Computer scientists sometimes refer to this column of
unique numbers as a key. A key is very useful, particularly for matching
things up from different data sources, and we will run into this idea again
later. For now, though, just take note that the Dad row can be distinguished
from the Bro row, even though they are both Male. Even if we added an
Uncle row that had the same Age, Gender, and Weight as Dad, we would
still be able to tell the two rows apart because one would have the name
Dad and the other would have the name Uncle.
One other important note: Look at how each column contains the same kind
of data all the way down. For example, the Age column is all numbers.
There’s nothing in the Age column like Old or Young. This is a really
valuable way of keeping things organized. After all, we could not run the
mean() function on the Age column if it contained a little piece of text, like
Old or Young. On a related note, every cell (i.e., an intersection of a row
and a column, such as Sis’s Age) contains just one piece of information.
Although a spreadsheet or a word processing program might allow us to put
more than one thing in a cell, a real data handling program will not. Finally,
see that every column has the same number of entries so that the whole
forms a nice rectangle. When statisticians and other people who work with
databases work with a data set, they expect this rectangular arrangement.
Creating Dataframes
Now let’s figure out how to get these rows and columns into R. One thing
you will quickly learn about R is that there is almost always more than one
way to accomplish a goal. Sometimes the quickest or most efficient way is
not the easiest to understand. In this case, we will build each column one by
one and then join them together. This is somewhat labor intensive, and not
the usual way that we would work with a data set, but it is easy to
understand. First, we run this command to make the column of names:



> myFamilyNames <- c(“Dad”,“Mom”,“Sis”,“Bro”,“Dog”)
One thing you might notice is that every name is placed within double
quotes. This is how you signal to R that you want it to treat something as a
string of characters rather than the name of a storage location. If we had
asked R to use Dad instead of “Dad” it would have looked for a storage
location (a data object or variable) named Dad. Another thing to notice is
that the commas separating the different values are outside of the double
quotes. If you were writing a regular sentence this is not how things would
look, but for computer programming the comma can only do its job of
separating the different values if it is not included inside the quotes. Once
you have typed the previous line, remember that you can check the contents
of myFamilyNames by typing it on the next command line:

> myFamilyNames
The output should look like this:

[1] “Dad” “Mom” “Sis” “Bro” “Dog”
Next, you can create a vector of the ages of the family members, like this:

> myFamilyAges <- c(43, 42, 12, 8, 5)
Note that this is exactly the same command we used in the last chapter, so if
you have kept R running between then and now you would not even have to
retype this command because myFamilyAges would still be there. Actually,
if you closed R since working the examples from the last chapter, you will
have been prompted to save the workspace. If you did so, then R restored
all the data objects you were using in the last session. You can always check
by typing myFamilyAges on a blank command line. The output should look
like this:

[1] 43 42 12 8 5
Hey, now you have used the c() function and the assignment arrow to make
myFamilyNames and myFamilyAges. If you look at the data table earlier in
the chapter you should be able to figure out the commands for creating
myFamilyGenders and myFamilyWeights. In case you run into trouble,
these commands also appear soon, but you should try to figure them out for
yourself before you see the commands in this book. In each case, after you
type the command to create the new data object, you should also type the
name of the data object at the command line to make sure that it looks the
way it should. There are four variables, each with five values in it. Two of
the variables are character data, and two of the variables are integer data.



Before we show you the R code to create myFamilyGenders and
myFamilyWeights, let’s explore myFamilyAges some more. We now know
that myFamilyAges is a variable, and that is a vector, which means it is a
list of numbers. We can access each number individually, using square
brackets [ ]. For example, if we want to output just the second element in
myFamilyAges, we could do the following:

> myFamilyAges[2]
[1] 42

Here are those two extra commands, to define myFamilyGenders and
myFamilyWeights in case you need them:

> myFamilyGenders <-
+ c(“Male”,“Female”,“Female”,“Male”,“Female”)
> myFamilyWeights <- c(188,136,83,61,44)

Note that the + on the second line was added by R: R knew we were not
done after just one line. The + means the line is a continuation of the
previous line, as opposed to starting a new R command. So, in the rest of
this book, when you see that +, know that R has added it to the command
line (just as when R adds the >, you know R is ready for a new command).
Now we are ready to tackle the dataframe. In R, a dataframe is a list (of
columns), where each element in the list is a vector. Each vector is the same
length, which is how we get our nice rectangular row-and-column setup,
and generally each vector also has its own name. The command to make a
dataframe is very simple:

> myFamily <- data.frame(myFamilyNames, myFamilyAges,
+ myFamilyGenders, myFamilyWeights)

Look out! We’re starting to get commands that are long enough that they
break onto more than one line. If you want, you can type the whole thing as
one line in R. Anyway, the data.frame() function makes a dataframe from
the four vectors that we previously typed in. Notice that we have also used
the assignment arrow to make a new stored location where R puts the
dataframe. This new data object, called myFamily, is our dataframe. Once
you have gotten that command to work, type myFamily at the command
line to get a report back of what the dataframe contains.

> myFamily
Here’s the output you should see:



This looks great. Notice that R has put row numbers in front of each row of
our data. These are different from the output line numbers we saw in square
brackets before, because these are actual indices into the dataframe. In other
words, they are the row numbers that R uses to keep track of which row a
particular piece of data is in.
Exploring Dataframes
With a small data set like this one, only five rows, it is pretty easy just to
take a look at all of the data. But when we get to a bigger data set this won’t
be practical. We need to have other ways of summarizing what we have.
The first method reveals the type of structure that R has used to store a data
object.

OK, so the function str() reveals the structure of the data object that you
name between the parentheses. In this case, we pretty well knew that
myFamily was a dataframe because we just set that up in a previous



command. In the future, however, we will run into many situations where
we are not sure how R has created a data object, so it is important to know
str() so that you can ask R to report what an object is at any time.
In the first line of output we have the confirmation that myFamily is a
dataframe as well as an indication that there are five observations (obs.,
which is another word that statisticians use instead of cases or instances)
and four variables. After that first line of output, we have four sections that
each begin with $. For each of the four variables, these sections describe the
component columns of the myFamily dataframe object.
Each of the four variables has a mode or type that is reported by R right
after the colon on the line that names the variable:

$ myFamilyGenders: Factor w/ 2 levels
For example, myFamilyGenders is shown as Factor. In the terminology that
R uses, Factor refers to a special type of label that can be used to identify
and organize groups of cases. R has organized these labels alphabetically
and then listed out the first few cases (because our dataframe is so small it
actually is showing us all the cases). For myFamilyGenders we see that
there are two levels, meaning that there are two different options: female
and male. R assigns a number, starting with 1, to each of these levels, so
every case that is Female gets assigned a 1 and every case that is Male gets
assigned a 2 (Female comes before Male in the alphabet, so Female is the
first Factor label and gets a 1). If you have your thinking cap on, you might
be wondering why we started out by typing in small strings of text, like
Male, but then R has gone ahead and converted these small pieces of text
into numbers that it calls Factors. The reason for this lies in the statistical
origins of R. For years, researchers have done things like calling an
experimental group Exp and a control group Ctl without intending to use
these small strings of text for anything other than labels. So R assumes,
unless you tell it otherwise, that when you type in a short string like Male
that you are referring to the label of a group, and that R should prepare for
the use of Male as a Level of a Factor. When you don’t want this to happen
you can instruct R to stop doing this with an option on the data.frame()
function: stringsAsFactors=FALSE. We will look with more detail at
options and defaults a little later on.
Phew, that was complicated! By contrast, our two numeric variables,
myFamilyAges and myFamilyWeights, are very simple. You can see that



after the colon the mode is shown as num (which stands for numeric) and
that the first few values are reported:

$ myFamilyAges : num 43 42 12 8 5
Putting it all together, we have pretty complete information about the
myFamily dataframe and we are just about ready to do some more work
with it. We have seen firsthand that R has sometimes has cryptic labels for
things as well as some obscure strategies for converting this to that. R was
designed for experts, rather than novices, so we will just have to take our
lumps so that one day we can be experts, too.
Next, we will examine another very useful function called summary(). The
summary command provides some overlapping information to the str
command but also goes a little farther, particularly with numeric variables.
Here’s what we get:

In order to fit on the page properly, these columns have been somewhat
reorganized. The name of a column/variable sits up above the information
that pertains to it, and each block of information is independent of the
others (so it is meaningless, for instance, that Bro: 1 and Min. happen to be
on the same line of output). Notice, as with str(), that the output is quite
different depending on whether we are talking about a Factor, like



myFamilyNames or myFamilyGenders, versus a numeric variable like
myFamilyAges and myFamilyWeights. The columns for the Factors list out
a few of the names along with the number of occurrences of cases that are
coded with that factor. So, for instance, under myFamilyGenders it shows
three females and two males. In contrast, for the numeric variables we get
five different calculated quantities that help to summarize the variable.
There’s no time like the present to start to learn about what these are, so
here goes:

Min. refers to the minimum or lowest value among all the cases. For
this dataframe, five is the age of Dog, and it is the lowest age of all of
the family members.
1st Qu. refers to the dividing line at the top of the first quartile. If we
took all the cases and lined them up side by side in order of age (or
weight) we could then divide up the whole into four groups, where
each group had the same number of observations. Just like a number
line, the smallest cases would be on the left with the largest on the
right. If we’re looking at myFamilyAges, the leftmost group, which
contains one quarter of all the cases, would start with five on the low
end (Dog) and would have eight on the high end (Bro). So the first
quartile is the value of age (or another variable) that divides the first
quarter of the cases from the other three quarters. Note that if we don’t
have a number of cases that divides evenly by four, the value is an
approximation.
Median refers to the value of the case that splits the whole group in
half, with half of the cases having higher values and half having lower
values. If you think about it, the median is also the dividing line that
separates the second quartile from the third quartile.
Mean, as we have learned before, is the numeric average of all of the
values. For instance, the average age in the family is reported as 22.
3rd Qu. is the third quartile. If you remember back to the first quartile
and the median, this is the third and final dividing line that splits up all
of the cases into four equal sized parts. You might be wondering about
these quartiles and what they are useful for. Statisticians like them
because they give a quick sense of the shape of the distribution.
Everyone has the experience of sorting and dividing things up—pieces
of pizza, playing cards into hands, a bunch of players into teams—and



it is easy for most people to visualize four equal-sized groups and
useful to know how high you need to go in age or weight (or another
variable) to get to the next dividing line between the groups.
Finally, Max is the maximum value and, as you might expect, displays
the highest value among all of the available cases. For example, in this
dataframe Dad has the highest weight: 188. Seems like a pretty trim
guy.

Wow, that was a lot of info! Taking a step back, these metrics that we just
described are different ways to measure a distribution. Mean and median
are measures of central tendency, in that they try to explain the center of the
distribution. Another key concept is the measure of dispersion, which lets
us understand how stretched out the distribution is. Example of a measure
of dispersion that you get from the summary() function include min, max,
and quartiles. Other measures, which we discuss in Chapter 9, include
variance and standard deviation.
While both the str() and summary() functions are very useful, sometimes
we just want to look at a couple of rows in the dataframe. Previously, we
typed myFamily at the command line and saw all the rows in the dataframe.
However, if the dataframe has many rows, a better way is to use head() or
tail().

You can see in the code that head() lists the first rows in the dataframe and
tail lists the last rows in the dataframe. The actual number of rows to output
is the second parameter, in our case, we had R output the first two rows and
then the last two rows in the myFamily dataframe.
Accessing Columns in a Dataframe
Just one more topic to pack in before ending this chapter: How to access the
stored variables in our new dataframe. R stores the dataframe as a list of



vectors, and we can use the name of the dataframe together with the name
of a vector to refer to each one using the $ to connect the two labels like
this:

> myFamily$myFamilyAges
[1] 43 42 12 8 5

If you’re alert, you might wonder why we went to the trouble of typing out
that big long thing with the $ in the middle when we could have just
referred to myFamilyAges as we did earlier when we were setting up the
data. Well, this is a very important point. When we created the myFamily
dataframe, we copied all of the information from the individual vectors that
we had before into a brand-new storage space. So now that we have created
the myFamily dataframe, myFamily$myFamilyAges actually refers to a
completely separate (but so far identical) vector of values. You can prove
this to yourself very easily, and you should, by adding some data to the
original vector, myFamilyAges:

> myFamilyAges <- c(myFamilyAges, 11)
> myFamilyAges
[1] 43 42 12 8 5 11
> myFamily$myFamilyAges
[1] 43 42 12 8 5

Look very closely at the five lines above. In the first line, we use the c()
command to add the value 11 to the original list of ages that we had stored
in myFamilyAges (perhaps we have adopted an older cat into the family).
In the second line, we ask R to report what the vector myFamilyAges now
contains. Dutifully, on the third line above, R reports that myFamilyAges
now contains the original five values and the new value of 11 on the end of
the list. When we ask R to report myFamily$myFamilyAges, however, we
still have the original list of five values only. This shows that the dataframe
and its component columns/vectors is now a completely independent piece
of data. We must be very careful, if we established a dataframe that we want
to use for subsequent analysis, that we don’t make a mistake and keep using
some of the original data from which we assembled the dataframe.
Here’s a puzzle that follows on from this question. We have a nice
dataframe with five observations and four variables. This is a rectangular
data set, as we discussed at the beginning of the chapter. What if we tried to



add on a new piece of data on the end of one of the variables? In other
words, what if we tried something like the following command?

> myFamily$myFamilyAges<-c(myFamily$myFamilyAges, 11)
If this worked, we would have a pretty weird situation: The variable in the
dataframe that contained the family members’ ages would all of a sudden
have one more observation than the other variables: no more perfect
rectangle! Try it out and see what happens. The result helps to illuminate
how R approaches situations like this.
So what new skills and knowledge do we have at this point? Here are a few
of the key points from this chapter:

In R, as in other programs, a vector is a list of elements/things that are
all of the same kind, or what R refers to as a mode. For example, a
vector of mode numeric would contain only numbers.
Statisticians, database experts, and others like to work with rectangular
data sets where the rows are cases or instances and the columns are
variables or attributes.
In R, one of the typical ways of storing these rectangular structures is
in an object known as a dataframe. Technically speaking, a dataframe
is a list of vectors where each vector has the exact same number of
elements as the others (making a nice rectangle).
In R, the data.frame() function organizes a set of vectors into a
dataframe. A dataframe is a conventional, rectangular data object
where each column is a vector of uniform mode and having the same
number of elements as the other columns in the dataframe. Data are
copied from the original source vectors into a new storage area. The
variables/columns of the dataframe can be accessed using $ to connect
the name of the dataframe to the name of the variable/column.
The str() and summary() functions can be used to reveal the structure
and contents of a dataframe (as well as of other data objects stored by
R). The str() function shows the structure of a data object, while
summary() provides numerical summaries of numeric variables and
overviews of non-numeric variables.
The head() and tail() functions can be used to reveal the first or last
rows in a dataframe.
A factor is a labeling system often used to organize groups of cases or
observations. In R, as well as in many other software programs, a



factor is represented internally with a numeric ID number, but factors
also typically have labels like Male and Female or Experiment and
Control. Factors always have levels, and these are the different groups
that the factor signifies. For example, if a factor variable called Gender
codes all cases as either Male or Female then that factor has exactly
two levels.
Min and max are often used as abbreviations for minimum and
maximum; these are the terms used for the highest and lowest values
in a vector. Bonus: The range of a set of numbers is the maximum
minus the minimum.
The mean is the same thing that most people think of as the average.
Bonus: The mean and the median are both measures of what
statisticians call central tendency.
Quartiles are a division of a sorted vector into four evenly sized
groups. The first quartile contains the lowest-valued elements, for
example, the lightest weights, whereas the fourth quartile contains the
highest-valued items. Because there are four groups, there are three
dividing lines that separate them. The middle dividing line that splits
the vector exactly in half is the median. The term first quartile often
refers to the dividing line to the left of the median that splits up the
lower two quarters, and the value of the first quartile is the value of the
element of the vector that sits right at that dividing line. Third quartile
is the same idea, but to the right of the median and splitting up the two
higher quarters. Bonus: quartiles is a measure of dispersion.
Chapter Challenge
Create another variable containing information about family
members (e.g., each family member’s estimated IQ; you can
make up the data). Take that new variable and put it in the
existing myFamily dataframe. Rerun the summary() function on
myFamily to get descriptive information on your new variable.

Sources
http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Statistical_dispersion
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http://en.wikipedia.org/wiki/Statistical_dispersion


http://stat.ethz.ch/R-manual/R-
devel/library/base/html/data.frame.html
http://www.burns-stat.com/pages/Tutor/hints_R_begin.html
http://www.khanacademy.org/math/statistics/v/mean-median-
and-mode
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6 Data Munging
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Learning Objectives
Describe what data munging is.
Demonstrate how to read a CSV data file.
Explain how to select, remove, and rename rows and columns.
Assess why data scientists need to be able to munge data.
Demonstrate how to munge data in R while using the following
functions: read.csv, url, gsub, rownames, colnames, order.

Data munging is the process of turning a data set with a bunch of junk in it
into a nice clean data set. Why is data munging required and why is it
important? Well, often R does not guess correctly the structure of the data
set, or perhaps R reads a number or a date and thinks it is a simple string.
Another issue might be that the data file might have additional information
that is useful for humans but not for R. If you think about it, so far we have
only explored simple data sets that we created within R. Clearly, the larger



the data set, the more difficult it becomes to just type the data into R.
Working through these issues so that R can process the data in a dataframe
is often a lot of work. It’s a big part of data science but perhaps not the most
glamorous.
Reading a CSV Text File
So, in this chapter, we explore how to read in a data set that is stored as a
comma-delimited text file (known as a CSV file—which stands for comma
separated values) that needs to be cleaned up. As we will see in future
chapters, there are many formats that we might have to be able to process to
get data into R, but for now we will focus on a very common human
readable file format. Our first real data set will be U.S. census data. The
U.S. Census Bureau has stored population data in many locations on its
website, with many interesting data sets to explore. We will use one of the
simpler data sets available at www2.census.gov/programs-
surveys/popest/tables/2010-2011/state/totals/.
Click on the CSV link for nst-est2011-01.csv; you will either download a
CSV (comma separated value file) or your browser will show a bunch of
text information, with the first few lines likes like:

table with row headers in column A and column headers in rows 3
through 4. (leading dots indicate sub-parts),,,,,,,,, “Table 1. Annual
Estimates of the Population for the United States, Regions, States, and
Puerto Rico: April 1, 2010 to July 1, 2011“,,,,,,,,, Geographic
Area,”April 1, 2010”,,Population Estimates (as of July 1),,,,,,,
Census,Estimates Base,2010,2011,,,,, United States,“308,
745,538”,“308,745,538”,“309,330,219”,“311,591, 917”,,,,,
Northeast,“55,317,240”,“55,317,244”,“55,366, 108”,“55,521,598”,,,,,
Midwest,“66,927,001”,“66,926, 987”,“66,976,458”,“67,158,835”,,,,,
South,“114,555, 744”,“114,555,757”,“114,857,529”,“116,046,736”,,,,,
West,“71,945,553”,“71,945,550”,“72,130,124”,“72,864,
748”,,,,,.Alabama,“4,779,736”,“4,779,735”,“4,785,401”,“4,802,740”,,,
,,

Now, having the data in the browser isn’t useful, so let’s write some R code
to read in this data set.

> urlToRead <-
+ “http://www2.census.gov/programs-surveys/

http://www2.census.gov/programs-surveys/popest/tables/2010-2011/state/totals/
http://www2.census.gov/programs-surveys/


+ popest/tables/2010-2011/state/totals/
+ nst-est2011-01.csv”
> testFrame <- read.csv(url(urlToRead))

The first line of code just defines the location (on the web) of the file to
load (note that the URL is so long, it actually takes four lines to define the
assignment). As we noted before, since the CSV file is human readable, you
can actually cut and paste the URL into a web browser, and the page will
show up as a list of rows of data. The next row of code reads the file, using
the read.csv command. Note we also use the url() function so R knows that
the filename is a URL (as opposed to a local file on the computer).
Next, let’s take a look at what we got back. We can use the str() function to
create a summary of the structure of testFrame:

The last few lines are reminiscent of that late 1960s song entitled, “Na Na
Hey Hey Kiss Him Goodbye.” Setting aside all the NA NA NA NAs,
however, the overall structure is 66 observations of 10 variables, signifying
that the spreadsheet contained 66 rows and 10 columns of data. The



variable names that follow are pretty bizarre. Now you understand what
data scientists mean by junk in their data. The first variable name is

table.with.row.headers.in.column.A.and.column.headers.in.rows.3.thro
ugh.4...leading.dots.indicate.sub.parts.

Removing Rows and Columns
What a mess! It is clear that read.csv() treated the upper-leftmost cell as a
variable label, but was flummoxed by the fact that this was really just a note
to human users of the spreadsheet (the variable labels, such as they are,
came on lower rows of the spreadsheet). Subsequent variable names include
X, X.1, and X.2: Clearly the read.csv() function did not have an easy time
getting the variable names out of this file.
The other worrisome finding from str() is that all of our data are factors.
This indicates that R did not see the incoming data as numbers, but rather as
character strings that it interpreted as factor data. Again, this is a side effect
of the fact that some of the first cells that read.csv() encountered were text
rather than numeric. The numbers came much later in the sheet. Clearly, we
have some work to do if we are to make use of these data as numeric
population values. This is common for data scientists, in that sometimes the
data are available but need to be cleaned up before they can be used. In fact,
data scientists often use the phrase “data munging” as the verb to describe
the act of cleaning up data sets. So, let’s get data munging!
First, let’s review one way to access a list, a vector or a dataframe. As
mentioned briefly in a previous chapter, in R, square brackets allow
indexing into a list, vector, or dataframe. For example, myList[3] would
give us the third element of myList. Keeping in mind that a dataframe is a
rectangular structure, really a two-dimensional structure, we can address
any element of a dataframe with both a row and column designator:
myFrame[4,1] would give the fourth row and the first column. A shorthand
for taking the whole column of a dataframe is to leave the row index empty:
myFrame[, 6] would give every row in the sixth column. Likewise, a
shorthand for taking a whole row of a dataframe is to leave the column
index empty: myFrame[10, ] would give every column in the tenth row. We
can also supply a list of rows instead of just one row, like this: myFrame[
c(1,3,5), ] would return rows 1, 3, 5 (including the data for all columns,
because we left the column index blank).



Using this knowledge, we will use an easy trick to get rid of stuff we don’t
need. The Census Bureau put in three header rows that we can eliminate
like this:

> testFrame <- testFrame[-1:-8,]
The minus sign used inside the square brackets refers to the index of rows
that should be eliminated from the dataframe. So the notation -1:-8 gets rid
of the first eight rows. We also leave the column designator empty so that
we can keep all columns for now. So the interpretation of the notation
within the square brackets is that rows 1 through 8 should be dropped, all
other rows should be included, and all columns should be included. We
assign the result back to the same data object, thereby replacing the original
with our new, smaller, cleaner version.
Next, we can see that of the 10 variables we got from read.csv(), only the
first five are useful to us (the last five seem to be blank). How can we know
that the last columns are not useful? Well, we can use the summary
command we saw last chapter to explore testFrame but only look at the
summary for the last five columns:

So, with the summary command, we can see those five columns are all just
NA, and so can be removed without removing any data from testFrame. We
can use the following command keeps the first five columns of the
dataframe:

> testFrame <- testFrame[,1:5]
In the same vein, the tail() function shows us that the last few rows just
contained some Census Bureau notes:

> tail(testFrame,5)
So we can safely eliminate those like this:

> testFrame <- testFrame[-52:-58,]
If you’re alert you will notice that we could have combined some of these
commands, but for the sake of clarity we have done each operation
individually. The result is a dataframe with 51 rows and five observations.
Renaming Rows and Columns



Now we are ready to perform a couple of data transformations. But before
we start these transformations, let’s give our first column a more reasonable
name:

> testFrame$stateName <- testFrame[,1]
We’ve used a little hack here to avoid typing out the ridiculously long name
of that first variable/column. We’ve used the column notation in the square
brackets on the right-hand side of the expression to refer to the first column
(the one with the ridiculous name) and simply copied the data into a new
column titled stateName.
Rather than create a new column, we could have renamed the column. So,
let’s also do this renaming, using the colnames() function. If this function is
just called with a dataframe as a parameter, then the function returns the
column names in the dataframe, as shown below:

We also can use colnames() to update the column names in the dataframe.
We do this by having the colnames() function on the left side of the
assignment statement. Putting this together, we first use colnames() to store
the current column names, then update the first element to a new name, and
finally use colnames() to update the column names in the dataframe:



This points out one of the good (and bad) aspects of using R—there is often
more than one way to get something done. Sometimes there is a better way,
but sometimes just an alternative way. In this situation, for very large data
sets, renaming columns would typically be slightly better than creating a
new column. In any event, since we have created the new column, let’s
remove the first column (since we already have the column name we want
with the last column in the data set).

> testFrame <- testFrame[,-1]
Cleaning up the Elements
Next, we can change formats and data types as needed. We can remove the
dots from in front of the state names very easily with the gsub() command,
which replaces all occurrence of a pattern and returns the new string. The g
means replace all (it actually stands for global substitute). There is also a
sub function, but we want all the dots to be removed, so we will use the
gsub() function.

> testFrame$stateName <- gsub(“\\.”,“”,
+ testFrame$stateName)

The two backslashes in the preceding string expression are called escape
characters, and they force the dot that follows to be treated as a literal dot
rather than as a wildcard character. The dot on its own is a wildcard that
matches one instance of any character.
Next, we can use gsub() and as.numeric() to convert the data contained in
the population columns to usable numbers. Remember that those columns
are now represented as R factors and what we are doing is taking apart the
factor labels (which are basically character strings that look like this:



308,745,538) and making them into numbers. First, let’s get rid of the
commas.

> testFrame$april10census <-gsub(“,”, “”, testFrame$X)
> testFrame$april10base <-gsub(“,”, “”, testFrame$X.1)
> testFrame$july10pop <- gsub(“,”, “”, testFrame$X.2)
> testFrame$july11pop <- gsub(“,”, “”, testFrame$X.3)

Next, let’s get rid of spaces and convert to a number:
> testFrame$april10census <- as.numeric(gsub(“ ”, “”,
+ testFrame$april10census))
> testFrame$april10base <- as.numeric(gsub(“ ”, “”,
+ testFrame$april10base))
> testFrame$july10pop <- as.numeric(gsub(“ ”, “”,
+ testFrame$july10pop))
> testFrame$july11pop <- as.numeric(gsub(“ ”, “”,
+ testFrame$july11pop))

This code is flexible in that it will deal with both unwanted commas and
spaces and will convert strings into numbers whether they are integers or
not (i.e., possibly with digits after the decimal point).
Finally, let’s remove the columns with the X names:

> testFrame <- testFrame[,-1:-4]
By the way, the choice of variable names for the new columns in the
dataframe was based on an examination of the original data set that was
imported by read.csv(). We can confirm that the new columns on the
dataframe are numeric by using str() to accomplish this.



Perfect! Let’s take a look at the first five rows:

Well, the data look good, but what are the 9, 10, 11, 12, and 13? They are
row names—which the read.csv function defined. At the time, those
numbers were the same as the row number in the file. But now, these make
no sense (if you remember, we deleted the first eight rows in this data set).
So, we have to do one more command to remove the confusing row names
with the following one line of R code:

> rownames(testFrame) <- NULL
This line basically tells R that we do not want to have row names and is
similar to colnames() but works on the row names, not the column names.



That’s much better. Notice that we’ve spent a lot of time just conditioning
the data we got in order to make it usable for later analysis. Herein lies a
very important lesson. An important, and sometimes time-consuming,
aspect of what data scientists do is to make sure that data are fit for the
purpose to which they are going to be put. We had the convenience of
importing a nice data set directly from the web with one simple command,
and yet getting those data actually ready to analyze took several additional
steps.
Sorting Dataframes
Now that we have a real data set, let’s do something with it! How about
showing the five states with the highest populations? One way to do this is
to sort the data set by the july11pop. But, while we can sort a vector with
the sort command, sorting the dataframe is somewhat more challenging. So,
let’s explore how to sort a column in a dataframe, and basically reorder the
dataframe. To accomplish this, we will use the order() function together
with R’s built-in square bracket notation.
As a reminder, we can supply a list of rows to access the dataframe:
myFrame[ c(1,3,5), ] would return rows 1, 3, 5 (including the data for all
columns, because we left the column index blank). We can use this feature
to reorder the rows, using the order() function. We tell order() which
variable we want to sort on, and it will give back a list of row indices in the
order we requested.
Putting it all together yields this command:

> sortedStates <-
+   testFrame[order(testFrame$july11pop), ]

Working our way from the inside to the outside of the expression above, we
want to sort in the order of the population, as defined by the july11pop



column. We wrap this inside the order() function. The order() function will
provide a list of row indices that reflects the population of the states. We
use the square brackets notation to address the rows in the testFrame, taking
all of the columns by leaving the index after the comma empty. Finally, we
stored the new dataframe in variable sortedStates. Let’s take a look at our
results:

Well, that is close, but it’s the states with the lowest populations. We wanted
the states with the largest (greatest) populations. We can either use the tail
command to see the states with the largest population, or do the sort, but tell
R to sort largest to smallest. We tell R we want the largest populations first
by putting a minus sign (–) next to the vector we want sorted. What this
actually does is that it makes the large numbers large negative numbers (so
they are smaller), and the small numbers small negative numbers (so they
are larger relative to the negative larger numbers). Wow, that’s confusing,
but it is easy to do in R and is done as follows:



That’s it! We can see California has the most people, followed by Texas,
and then New York.
In summary, as you have seen, data munging requires lots of knowledge of
how to work with dataframes, combined with persistence to get the data
into a format that is useful. While we have explored some common
challenges related to data munging, there are other challenges we did not
get to in this chapter. One classic challenge is working with dates, in that
there are many formats such as a year with two or four digits and dates with
the month or day is listed first. Another challenge often seen is when we
want to combine two data sets. Combining them can be useful, for example
when you have a data set with a person’s name (or id) and her purchase
history. A related data set might have that person’s name (or id) and the
state where she lives.

Chapter Challenge
Practice reading in a data set; this time the data set is about
loans. Go to the lendingClub website
(http://www.lendingclub.com/info/download-data.action),
download a CSV file and then read in the file (using read.csv).
Then, clean up the data set, making sure all the columns have
useful information. This means you must explore the data set to
understand what needs to be done! One trick to get you started
is that you might need to skip one or more lines (before the
header line in the CSV file). There is a skip parameter that you
can use in your read.csv() command.

Sources

http://www.lendingclub.com/info/download-data.action


http://www2.census.gov/programs-surveys/popest/

R Commands Used in This Chapter

http://www2.census.gov/programs-surveys/popest/


7 Onward with RStudio®
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Learning Objectives
Know how to install the RStudio software package.
Gain familiarity with using RStudio’s interactive development
environment.
Construct and save R scripts.

In the previous chapter, we typed a variety of commands into R, using what
is known as the R console. Console is an old technology term that dates
back to the days when computers were so big that they each occupied its
own air-conditioned room. Within that room there was often one master
control station where a computer operator could do just about anything to
control the giant computer by typing in commands. That station was known
as the console. The term console is now used in many cases to refer to any
interface where you can directly type in commands. We’ve typed
commands into the R console in an effort to learn about the R language as



well as to illustrate some basic principles about data structures and
statistics.
RStudio is a trademark of RStudio, Inc.
Using an Integrated Development Environment
If we really want to “do” data science, though, we can’t sit around typing
commands every day. First, it will become boring very fast. Second,
whoever is paying us to be a data scientist will get suspicious when he or
she notices that we are retyping some of the commands we typed yesterday.
Third, and perhaps most important, it is way too easy to make a mistake—
to create what computer scientists refer to as a bug—if you are doing every
little task by hand. For these reasons, one of our big goals within this book
is to create something that is reusable: where we can do a few clicks or type
a couple of things and unleash the power of many processing steps. Using
an integrated development environment (often abbreviated IDE), we can
build these kinds of reusable pieces.
Every software engineer knows that if you want to get serious about
building something out of code, you must use an IDE. Starting in 2009,
Joseph J. Allaire, a serial entrepreneur, a software engineer, and the
originator of some remarkable software products, began working with a
small team to develop an open source program that enhances the usability
and power of R. As mentioned in previous chapters, R is an open source
program, meaning that the source code that is used to create a copy of R to
run on a Mac, Windows, or Linux computer is available for all to inspect
and modify. As with many open source projects, there is an active
community of developers who work on R, both on the basic program itself
and on the many pieces and parts that can be added on to the basic program.
If you think of R as a piece of canvas rolled up and lying on the floor,
RStudio is like an elegant picture frame. R hangs in the middle of RStudio
which like any good picture frame, enhances our appreciation of what is
inside it. The IDE gives us the capability to open up the process of creation,
to peer into the component parts when we need to, and to close the hood
and hide them when we don’t. Because we are working with data, we also
need a way of closely inspecting the data, both its contents and its structure.
As you probably noticed, it gets pretty tedious doing this at the R console,
where almost every piece of output is a chunk of text and longer chunks



scroll off the screen before you can see them. As an IDE for R, RStudio
allows us to control and monitor both our code and our text in a way that
supports the creation of reusable elements.
Installing RStudio
Before we can get there, though, we have to have RStudio installed on a
computer. Perhaps the most challenging aspect of installing RStudio is
having to install R first, but if you’ve already done that in Chapter 2, then
RStudio should be a piece of cake. Make sure that you have the latest
version of R installed before you begin with the installation of RStudio.
There is ample documentation on the RStudio website,
http://www.rstudio.org/, so if you follow the instructions there, you should
have minimal difficulty. If you reach a page where you are asked to choose
between installing RStudio server and installing RStudio as a desktop
application on your computer, choose the latter. If you run into any
difficulties or you just want some additional guidance about RStudio, you
might want to have a look at the book entitled, Getting Started with R-
studio, by John Verzani (2011, Sebastopol, CA: O’Reilly Media). The first
chapter of that book has a general orientation to R and RStudio as well as a
guide to installing and updating RStudio. There is also a YouTube video
that introduces RStudio here: http://www.youtube.com/watch?
v=7sAmqkZ3Be8
If you search for other YouTube videos, be aware that there is a disk
recovery program as well a music group that share the RStudio name: You
will get a number of these videos if you search on “RStudio” without any
other search terms.
Once you have installed RStudio, you can run it immediately in order to get
started with the activities in the later parts of this chapter. Unlike other
introductory materials, we will not walk through all of the different
elements of the RStudio screen. Rather, as we need each feature we will
highlight the new aspect of the application. When you run RStudio, you
will see three or four sub-windows. Use the File menu to click New and in
the sub-menu for New click R Script. This should give you a screen that
looks something like Figure 7.1.
Creating R Scripts

http://www.rstudio.org/
http://www.youtube.com/watch?v=7sAmqkZ3Be8


Now let’s use RStudio! In the lower-left-hand pane (another name for a sub-
window) of RStudio you will notice that we have a regular R console
running. You can type commands into this console, just like we did in
previous chapters just using R:
Figure 7.1

Click in the console pane and type the following:
> tinyData <- c(1,2,1,2,3,3,3,4,5,4,5)
> mean(tinyData)
[1] 3

As you can see, this behaves the exact same way as just using the R
console!
However, it gets much more interesting if we use the upper-left-hand pane,
which displays a blank space under the tab title Untitled1. This is the pane
that contains your R source code file. If you click on the source code pane
(upper-left pane) and then enter the following code:

tinyData <- c(1,2,1,2,3,3,3,4,5,4,5)
min(tinyData)
mean(tinyData)
sum(tinyData)

You can see, we are now writing R code, but you do not write the >. That is
because we are not writing the code in the R console, but instead, we are
writing the code in an R source file, which can be saved. Once we have the



R source code, we can select “source with echo” to run the commands that
you wrote into the R script file (upper-left-hand pane). You will then see the
output in the lower-left-hand console pane. Once you have sourced (or run)
the commands in the upper-left source pane, the output on the console looks
as follows:

> tinyData <- c(1,2,1,2,3,3,3,4,5,4,5)
>
> min(tinyData)
[1] 1
> mean(tinyData)
[1] 3
> sum(tinyData)
[1] 33

As you can see, it is just as if we had typed the commands into the console
window and that the output of min, mean, and sum commands show up in
the R console pane. Your RStudio should now look like Figure 7.2.
Figure 7.2

Note that you can also see in the upper right, there is a data element
(tinyData). Let’s write some more code in our R source file. First, we can
create another vector, with each element of the vector being five more than
the value in the tinyData vector. We next can create a dataframe using these



two vectors. Finally, we can practice changing the column names within the
dataframe.

biggerData <- tinyData + 5
df <- data.frame(tinyData, biggerData)
colnames(df) <- c(“small”, “big”)

Another way to execute the code is to select (highlight) the code in the R
source code window, and then press the “run” button. After doing that, you
should see something like Figure 7.3.
Figure 7.3

Note that in the upper right the environment window now has the dataframe
df as well as the two vectors biggerData and tinyData. We can also explore
the contents of df by clicking on the little down arrow (directly to the left of
df in the Data part of the Global Environment). The other tab in the upper
right is the History tab. This is useful to see the list of previous R
commands we have executed. While we have not yet discussed the lower-
right window, we will use that window later to see the results of our
visualizations.
To recap, this chapter provided a basic introduction to RStudio, an IDE for
R. An IDE is useful for helping to build reusable components for handling
data and conducting data analysis. From this point forward, we will use
RStudio, rather than plain old R, in order to save and be able to reuse our
work. Among other things, RStudio makes it easy to manage packages in R,



and packages are the key to R’s extensibility. In future chapters, we will be
routinely using R packages to get access to specialized capabilities. These
specialized capabilities come in the form of extra functions that are created
by developers in the R community

Chapter Challenge
Explore the global environment window within RStudio. Try to
explain the difference between the Data variables and the Values
variables.

Sources
http://en.wikipedia.org/wiki/R_(programming_language)
http://en.wikipedia.org/wiki/Joseph_J._Allaire
http://dss.princeton.edu/training/RStudio101.pdf
http://www.youtube.com/watch?v=7sAmqkZ3Be8
https://www.rstudio.com/products/rstudio/features/
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8 What’s My Function?
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Learning Objectives
Explain the benefits of writing and using functions.
Write, verify, and use custom functions in R.
Demonstrate how to use the following R functions: function,
return, tabulate, unique, match, which.max.

We have previously been using and talking about functions. If you
remember, back in Chapter 3 we used functions such as sum() and mean().
We also tried to use fish(), but that function was not defined, so R gave us
an error. In this chapter, we will learn to create our own functions. While we
will not define the function fish(), by the end of this chapter, if you really
wanted, you will be able to create the fish function.
Why Create and Use Functions?
Functions provide two key benefits. First, a key reason to create and use a
function is so that we will not have to type the same R code over and over
again. That is to say, when we write a function we can easily reuse the code.



So, as we start to build more-complicated R programs, due to our desire to
reuse R code we will need to create our own functions (as well as using
more-advanced functions). The second key benefit of using a function is
that, when using the function, we do not need to understand the details of
how the function was written. This is known as abstraction. So, if we just
want to use a function in our program, we don’t have to know how it works
inside! In fact, because of abstraction, when we use a function we only need
to know the arguments that must be given to the function and what the
function returns.
We actually already ran into arguments a little while ago with functions
such as mean() and sum(). However, we did not talk about the concept of
arguments then—we just used the function. Argument is a term used by
computer scientists to refer to some extra information that is sent to a
function to help it know how to do its job. For the function mean, we passed
one argument, the vector on which we should calculate the mean. Other
functions take more than one argument. One such function is tail(), which
takes two arguments.
Creating Functions in R
As a start, click in that R source code pane (the upper-left window in
RStudio) and type the following:

MyMode <- function(myVector)
{
return(myVector)
}

You have just created your first function in R. As was previously
mentioned, a function is a bundle of R code that can be used over and over
again without having to retype it. Other programming languages also have
functions. Other words for function are “procedure” and “subroutine,”
although these terms can have a slightly different meaning in other
languages. We have called our function MyMode. You might remember
from a couple of chapters ago that the basic setup of R does not have a
statistical mode function in it, even though it does have functions for the
two other common central tendency statistics: mean() and median(). We’re
going to fix that problem by creating our own mode function. Recall that
the mode function should count up how many of each value is in a list and



then return the value that occurs most frequently. That is the definition of
the statistical mode: the most frequently occurring item in a vector of
numbers.
A couple of other things to note: The first is the myVector in parentheses on
the first line of our function. This is the argument, or input to the function.
We have seen and used arguments when we called functions such as mean()
and median(). Next, note the curly braces that are used on the second and
final lines. These curly braces hold together all of the code that goes in our
function. Finally, look at the return() right near the end of our function. This
return() is where we send back the result of what our function
accomplished. Later on, when we call our new function from the R console,
the result that we get back will be whatever is in the parentheses in the
return().
Based on that explanation, can you figure out what MyMode() does in this
primitive initial form? All it does is return whatever we give it in myVector,
completely unchanged. By the way, this is a common way to write code, by
incrementally enhancing what we are building. We can test out what we
have each step of the way. Let’s test out what we have accomplished so far.
First, let’s make a very small vector of data to work with. In the lower-left-
hand pane of RStudio you will remember that we have a regular R console
running. You can type commands into this console, just as we did in
previous chapters:

> tinyData <- c(1,2,1,2,3,3,3,4,5,4,5)
> tinyData
[1] 1 2 1 2 3 3 3 4 5 4 5

Then we can try out our new MyMode() function:
> MyMode(tinyData)
Error: could not find function “MyMode”

Oops! R doesn’t know about our new function yet. We typed our MyMode()
function into the code window, but we didn’t tell R about it. If you look in
the upper-left pane, you will see the code for MyMode() and just above that
a few small buttons on a tool bar. One of the buttons looks like a little right
pointing arrow with the word “Run” next to it. First, use your mouse to
select all of the code for MyMode(), from the first M all the way to the last
curly brace. Then click the Run button. You will immediately see the same
code appear in the R console window just below. If you have typed



everything correctly, there should be no errors or warnings. Now R knows
about our MyMode() function and is ready to use it. Now we can type the
following:

> MyMode(tinyData)
[1] 1 2 1 2 3 3 3 4 5 4 5

This did exactly what we expected: It just echoed back the contents of
tinyData. You can also see from this example how parameters work. In the
command just above, we passed in tinyData as the input to the function.
While the function was working, it took what was in tinyData and copied it
into myVector for use inside the function. Now we are ready to add the next
command to our function:

MyMode <- function(myVector)
{
uniqueValues <- unique(myVector)
return(uniqueValues)
}

Because we made a few changes, the whole function appears again above.
Later, when the code gets a little more complicated, we will provide one or
two additional lines of code. Let’s see what this code does. First, don’t
forget to select the code and click on the Run button. Then, in the R
console, try the MyMode() command again:

> MyMode(tinyData)
[1] 1 2 3 4 5

Pretty easy to see what the new code does, right? We called the unique()
function, and that returned a list of unique values that appeared in tinyData.
Basically, unique() took out all of the redundancies in the vector that we
passed to it. Now let’s build a little more:

MyMode <- function(myVector)
{
uniqueValues <- unique(myVector)
uniqueCounts <- tabulate(myVector)
return(uniqueCounts)
}

Don’t forget to select all of this code and run it before testing it out. This
time when we pass tinyData to our function we get back another list of five



elements, but this time it is the count of how many times each value
occurred:

> MyMode(tinyData)
[1] 2 2 3 2 2

Now we’re basically ready to finish our MyMode() function, but let’s make
sure we understand the two pieces of data we have in uniqueValues and
uniqueCounts. In Table 8.1 we have lined up a row of the elements of
uniqueValues just above a row of the counts of how many of each of those
values we have. Just for illustration purposes, in the top/label row we have
also shown the index number. This index number is the way that we can
address the elements in either of the variables that are shown in the rows.
For instance, element number 4 (index 4) for uniqueValues contains the
number 4, whereas element number 4 for uniqueCounts contains the
number 2.

So if we’re looking for the most frequently occurring item, we should look
along the bottom row for the largest number. When we get there, we should
look at the index of that cell. Whatever that index is, if we look in the same
cell in uniqueValues, we will have the value that occurs most frequently in
the original list. In R, it is easy to accomplish what was described in the last
sentence with a single line of code:

uniqueValues <- unique(tinyData)
uniqueCounts <- tabulate(tinyData)
uniqueValues[which.max(uniqueCounts)]

The which.max() function finds the index of the element of uniqueCounts
that is the largest. Then we use that index to address uniqueValues with
square brackets. The square brackets let us get at any of the elements of a
vector. For example, if we asked for uniqueValues[5] we would get the
number 5. If we add this one list of code to our return statement, our
function will be finished:

MyMode <- function(myVector)



{
uniqueValues <- unique(myVector)
uniqueCounts <- tabulate(myVector)
return(uniqueValues[which.max(uniqueCounts)])
}

Testing Functions
We’re now ready to test our function. Don’t forget to select the whole thing
and run it! Otherwise R will still be remembering our old MyMode()
function. Let’s ask R what tinyData contains, just to remind ourselves, and
then we will send tinyData to our MyMode() function:

> tinyData
[1] 1 2 1 2 3 3 3 4 5 4 5
> MyMode(tinyData)
[1] 3

Hooray! It works. Three is the most frequently occurring value in tinyData.
Let’s keep testing and see what happens:

> tinyData <- c(tinyData,5,5,5)
> tinyData
[1] 1 2 1 2 3 3 3 4 5 4 5 5 5 5
> MyMode(tinyData)
[1] 5

It still works! We added three more fives to the end of the tinyData vector.
Now tinyData contains five 5s. MyMode() properly reports the mode as 5.
Hmm, now let’s try to break it:

> tinyData <- c(tinyData, 1, 1, 1)
> tinyData
[1] 1 2 1 2 3 3 3 4 5 4 5 5 5 5 1 1 1
> MyMode(tinyData)
[1] 1

This is interesting: Now tinyData contains five 1s and five 5s. MyMode()
now reports the mode as 1. This turns out to be no surprise. In the
documentation for which.max() it says that this function will return the first
maximum it finds. So this behavior is to be expected. Actually, this is
always a problem with the statistical mode: There can be more than one
mode in a data set. Our MyMode() function is not smart enough to realize



this, nor does it give us any kind of warning that there are multiple modes
in our data. It just reports the first mode that it finds.
Here’s another problem:

> tinyData<-c(tinyData,9,9,9,9,9,9,9)
> MyMode(tinyData)
[1] NA
> tabulate(tinyData)
[1] 5 2 3 2 5 0 0 0 7

In the first line, we stuck a bunch of 9s on the end of tinyData. Remember
that we had no 6s, 7s, or 8s. Now when we run MyMode() it says NA,
which is R’s way of saying that something went wrong and you are getting
back an empty value. It is probably not obvious why things went wacky
until we look at the last command above, tabulate(tinyData). Here we can
see what happened: When it was run inside the MyMode() function,
tabulate() generated a longer list than we were expecting, because it added
zeroes (0s) to cover the 6s, 7s, and 8s that were not there. The maximum
value, out at the end is 7, and this refers to the number of 9s in tinyData.
But look at what the unique() function produces:

> unique(tinyData)
[1] 1 2 3 4 5 9

There are only six elements in this list, so it doesn’t match up as it should.
(Take another look at Table 8.1 and imagine if the bottom row stuck out
farther than the row just above it.) We can fix this with the addition of the
match() function to our code:

MyMode <- function(myVector)
{
uniqueValues <- unique(myVector)
uniqueCounts <- tabulate(match(myVector,
 uniqueValues))
return(uniqueValues[which.max(uniqueCounts)])
}

Now instead of tabulating every possible value, including the ones for
which we have no data, we tabulate only those items where there is a match
between the list of unique values and what is in myVector. Now when we
ask MyMode() for the mode of tinyData we get the correct result:

> MyMode(tinyData)



[1] 9
Aha! Now it works the way it should. After our last addition of seven 9s to
the data set, the mode of this vector is correctly reported as 9.
Before we leave this activity, make sure to save your work. Click anywhere
in the code window and then click on the File menu and then on Save. You
will be prompted to choose a location and provide a filename. You can call
the file MyMode, if you like. Note that R adds the R extension to the
filename so that it is saved as MyMode.R. You can open this file at any time
and rerun the MyMode() function in order to define the function in your
current working version of R.
A couple of other points deserve attention. First, notice that when we
created our own function we had to do some testing and repairs to make
sure it ran the way we wanted it to. This is a common situation when
working on anything related to computers, including spreadsheets, macros,
and pretty much anything else that requires precision and accuracy. Second,
we introduced at least four new functions in this exercise, including
unique(), tabulate(), match(), and which.max(). Where did these come from
and how did we know that these functions existed? R has so many functions
that it is very difficult to memorize them all. There’s almost always more
than one way to do something, as well. So it can be quite confusing to
create a new function if you don’t know all of the ingredients and there’s no
one way to solve a particular problem. This is where the community comes
in. Search online and you will find dozens of instances where people have
tried to solve similar problems to the one you are solving, and you will also
find that they have posted the R code for their solutions. These code
fragments are free to borrow and test. In fact, learning from other people’s
examples is a great way to expand your horizons and learn new techniques.
The last point leads into the next key topic. We had to do quite a lot of work
to create our MyMode function, and we are still not sure that it works
perfectly on every variation of data it might encounter. Maybe someone else
has already solved the same problem. If they did, we might be able to find
an existing package to add onto our copy of R to extend its functions. In
fact, for the statistical mode there is an existing package that does just about
everything you could imagine doing with the mode. As shown in Figure
8.1, this package is called modeest, which is short for ‘mode-estimator.’
Figure 8.1



Installing a Package to Access a Function
To install this package, look in the lower-right-hand pane of RStudio. There
are several tabs there, and one of them is Packages. Click on this and you
will get a list of every package that you already have available in your copy
of R (it might be a short list) with checkmarks for the ones that are ready to
use. It is unlikely that modeest is already on this list, so click on the button
that says Install Packages. This will give a dialog that looks like what you
see in Figure 8.1. Type the beginning of the package name in the
appropriate area, and RStudio will start to prompt you with matching
choices. Finish typing “modeest” or choose it from the list. There might be
a checked box for Install Dependencies, and if so leave this checked. In
some cases, an R package will depend on other packages, and R will install
all of the necessary packages in the correct order if it can. Once you click
the Install button in this dialog, you will see some commands running on
the R console (the lower-left pane). Generally, this works without a hitch
and you should not see any warning messages. Once the installation is
complete you will see modeest added to the list in the lower-right pane
(assuming you have clicked the Packages tab). One last step is to click the
check box next to it. This runs the library() function on the package, which
prepares it for further use.



Let’s try out the mfv() function. This function returns the most frequent
value in a vector, which is generally what we want in a mode function:

> mfv(tinyData)
[1] 9

So far, so good! This seems to do exactly what our MyMode() function did,
though it probably uses a different method. In fact, it is easy to see what
strategy the authors of this package used just by typing the name of the
function at the R command line:

> mfv
function (x, ...)
{
f <- factor(x)
tf <- tabulate(f)
return(as.numeric(levels(f)[tf == max(tf)]))
}
<environment: namespace:modeest>

This is one of the great things about an open source program: You can
easily look under the hood to see how things work. Notice that, while trying
to understand this function at this time is beyond what we know, we can see
that this code is quite different from how we built MyMode(), although it,
too, uses the tabulate() function. The final line, that begins with the word
“environment” has importance for more-complex feats of programming,
since it indicates which variable names mfv() can refer to when it is
working. The other aspect of this function, which is probably not so
obvious, is that it will correctly return a list of multiple modes when such a
list exists in the data you send to it:

> multiData <- c(1,5,7,7,9,9,10)
> mfv(multiData)
[1] 7 9
> MyMode(multiData)
[1] 7

In the first command line above, we made a small new vector that contains
two modes, 7 and 9. Each of these numbers occurs twice, whereas the other
numbers occur only once. When we run mfv() on this vector it correctly
reports both 7 and 9 as modes. When we use our function, MyMode(), it
only reports the first of the two modes.



To recap, by creating our own function we have learned that functions take
arguments as their inputs and provide a return value. A return value is a
data object, so it could be a single number (technically a vector of length
one), or it could be a list of values (a vector) or even a more complex data
object. We can write and reuse our own functions, which we will do quite
frequently later in the book, or we can use other people’s functions by
installing their packages and using the library() function to make the
contents of the package available. Once we have used library(), we can
inspect how a function works by typing its name at the R command line.
(Note that this works for many functions, but there are a few that were
created in a different computer language, like C, and we will not be able to
inspect the code for those as easily.)

Chapter Challenge
Write and test a new function called MyVectorInfo() that takes
as input a vector and returns the key characteristics of the
vector, such as the min, the max, and the mean of the vector.
Make sure to give careful thought about the parameters you will
need to pass to your function and what kind of data object your
function will return.

Sources
https://www.cs.utah.edu/~zachary/computing/lessons/uces-
10/uces-10/node11.html

R Commands Used in This Chapter

https://www.cs.utah.edu/~zachary/computing/lessons/uces-10/uces-10/node11.html


9 Beer, Farms, and Peas and the Use of Statistics
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Learning Objectives
Explain why we need to sample from a population.
Compare the basic concepts of descriptive statistics such as
mean, median, range, mode, variance, standard deviation.
Use histograms to explain the concepts of central tendency and
measures of dispersion.
Understand and be able to generate a normal distribution.
Demonstrate how to usethe following R functions: mean,
median, var, sd, hist, rnorm.

Historical Perspective
The end of the 1800s and the early 1900s were a time of astonishing
progress in mathematics and science. Given enough time, paper, and
pencils, scientists and mathematicians of that age imagined that just about
any problem facing humankind—including the limitations of people
themselves—could be measured, broken down, analyzed, and rebuilt to



become more efficient. Four Englishmen who epitomized both this
scientific progress and these idealistic beliefs were Francis Galton, Karl
Pearson, William Sealy Gosset, and Ronald Fisher.
First on the scene was Francis Galton, a half-cousin to the more widely
known Charles Darwin, but quite the intellectual force himself. Galton was
a gentleman of independent means who studied Latin, Greek, medicine, and
mathematics, and who made a name for himself as an explorer in Africa. He
created the statistical concept of correlation and regression. He was also the
first to apply statistical methods to the study of human differences and the
inheritance of intelligence, which led to him coining the phrase “nature
versus nurture.” Alas, he also introduced the concept of eugenics. Eugenics
was the idea that the human race could be improved through selective
breeding. Galton studied heredity in peas, rabbits, and people and
concluded that certain people should be paid to get married and have
children because their offspring would improve the human race. For many
people, the concept of eugenics is in itself a bad concept. Unfortunately,
these ideas were perverted and used, most notably by the Nazis, as a
justification for killing people.
For all his studying and theorizing, Galton was not an outstanding
mathematician, but he had a junior partner, Karl Pearson, who is often
credited with founding the field of mathematical statistics. Pearson refined
the math behind correlation and regression and did a lot else besides to
contribute to our modern abilities to manage numbers. Like Galton, Pearson
was a proponent of eugenics, but he also is credited with inspiring some of
Einstein’s thoughts about relativity and was an early advocate of women’s
rights.
Next to the statistical party was William Sealy Gosset, a wizard at both
math and chemistry. It was probably the latter expertise that led the
Guinness brewery in Dublin, Ireland, to hire Gosset after college. As a
forward-looking business, the Guinness brewery was on the lookout for
ways of making batches of beer more consistent in quality. Gosset stepped
in and developed what we now refer to as small sample statistical
techniques—ways of generalizing from the results of a relatively few
observations. Of course, brewing a batch of beer is a time-consuming and
expensive process, so in order to draw conclusions from experimental
methods applied to just a few batches, Gosset had to figure out the role of



chance in determining how each batch beer turned out. Guinness frowned
on academic publications, so Gosset had to publish his results under the
modest pseudonym, “Student.” If you ever hear someone discussing the
“Student’s t-Test,” that is where the name came from.
Last but not least among the born-in-the-1800s bunch was Ronald Fisher,
another mathematician who also studied the natural sciences, in his case
biology and genetics. Unlike Galton, Fisher was not a gentleman of
independent means. In fact, during his early married life he and his wife
struggled as subsistence farmers. One of Fisher’s professional postings was
to an agricultural research farm called Rothhamsted Experimental Station.
Here, he had access to data about variations in crop yield that led to his
development of an essential statistical technique known as the analysis of
variance. Fisher also pioneered the area of experimental design, which
includes matters of factors, levels, experimental groups, and control groups
that we noted in the previous chapter.
Of course, these four are certainly not the only 19th- and 20th-century
mathematicians to have made substantial contributions to practical
statistics, but they are notable with respect to the applications of
mathematics and statistics to the other sciences (and “Beer, Farms, and
Peas” makes a good chapter title as well).
Sampling a Population
One of the critical distinctions woven throughout the work of these four is
between the sample of data that you have available to analyze and the larger
population of possible cases that might or do exist. When Gosset ran
batches of beer at the brewery, he knew that it was impractical to run every
possible batch of beer with every possible variation in recipe and
preparation. Gosset knew that he had to run a few batches, describe what he
had found, and then generalize or infer what might happen in future
batches. This is a fundamental aspect of working with all types and amounts
of data: Whatever data you have, there’s always more out there. There are
data that you might have collected by changing the way things are done or
the way things are measured. There are future data that hasn’t been
collected yet and might never be collected. There are even data that we
might have gotten using the exact same strategies we did use but that would
have come out subtly different just due to randomness. Whatever data you



have, it is just a snapshot, or sample, of what might be out there. This leads
us to the conclusion that we can never, ever 100% trust the data we have.
We must always hold back and keep in mind that there is always
uncertainty in data. A lot of the power and goodness in statistics comes
from the capabilities that people like Fisher developed to help us
characterize and quantify that uncertainty and for us to know when to guard
against putting too much stock in what a sample of data has to say. So
remember that while we can always describe the sample of data we have,
the real trick is to infer what the data could mean when generalized to the
larger population of data that we don’t have. This is the key distinction
between descriptive and inferential statistics.
Understanding Descriptive Statistics
We have already encountered several descriptive statistics in previous
chapters, but for the sake of practice here they are again, this time with the
more-detailed definitions:

The mean (technically the arithmetic mean), is a measure of central
tendency that is calculated by adding together all of the observations
and dividing by the number of observations.
The median is another measure of central tendency but one that cannot
be directly calculated. Instead, you make a sorted list of all of the
observations in the sample and then go halfway up that list. Whatever
the value of the observation is at the halfway point, that is the median.
The range is a measure of dispersion—how spread out a bunch of
numbers in a sample are—calculated by subtracting the lowest value
from the highest value.
The mode is another measure of central tendency. The mode is the
value that occurs most often in a sample of data. Like the median, the
mode cannot be directly calculated. You just have to count up how
many of each number there are and then pick the category that has the
most.

To this list we should add two more descriptive statistics that you will run
encounter in a variety of situations.
First, the variance is a measure of dispersion. Like the range, the variance
describes how spread out a sample of numbers is. Unlike the range, though,
which uses just two numbers to calculate dispersion, the variance is



obtained from all of the numbers through a simple calculation that
compares each number to the mean. If you remember the ages of the family
members from the previous chapter and the mean age of 22, you will be
able to make sense out of Table 9.1.

Table 9.1 shows the calculation of the variance, which begins by obtaining
the deviations from the mean and then squares them (multiply each one
times itself) to take care of the negative deviations (e.g., –14 from the mean
for Bro). We add up all of the squared deviations and then divide by the
number of observations to get a kind of average squared deviation. Note
that it was not a mistake to divide by 4 instead of 5—the reasons for this is
beyond the scope of this book but is related to the concept of degrees of
freedom. This result is the variance, a very useful mathematical concept that
appears all over the place in statistics. While it is mathematically useful, it
is not too nice to look at. For instance, in this example we are looking at the
356.5 squared-years of deviation from the mean. Who measures anything in
squared years? Squared feet maybe, but that’s a different discussion. So, to
address this weirdness, statisticians have also provided us with the next
descriptive statistic.
The standard deviation is another measure of dispersion and a cousin to the
variance. The standard deviation is simply the square root of the variance,
which puts us back in regular units like years. In the previous example, the
standard deviation would be about 18.88 years (rounding to two decimal
places, which is plenty in this case).
Now let’s have R calculate some statistics for us:



> var(myFamily$myFamilyAges)
[1] 356.5
> sd(myFamily$myFamilyAges)
[1] 18.88121

Note that these commands carry on using the data we used in the previous
chapter, including the use of the $ to address variables within a dataframe.
If you do not have the data from the previous chapter you can also do this:

> var(c(43,42,12,8,5))
[1] 356.5
> sd(c(43,42,12,8,5))
[1] 18.88121

Using Descriptive Statistics
This was a pretty boring example, though, and not very useful for the rest of
the chapter, so let’s analyze our previously discussed U.S. population data
set. Since we will use this data set many times, let’s create a readCensus
function. In the code that follows, note how comments are used (anything
after the #) so that if we go back to this code, we can understand what was
done. If some of this code does not make sense, go back to the previous
chapter on data munging and review how we worked on this data set to get
it into something useful.

#read in the census data set
readCensus <- function() {
urlToRead <-
“http://www2.census.gov/programs-surveys/”
popest/tables/2010-2011/state/totals/
nst-est2011-01.csv”
#read the data from the web
testFrame <- read.csv(url(urlToRead))
#remove the first 8 rows (‘header information’)
testFrame<-testFrame[-1:-8,]
#only keep the first 5 columns
testFrame<-testFrame[,1:5]
#rename the first column
testFrame$stateName <- testFrame[,1]
testFrame<-testFrame[,-1]

http://www2.census.gov/programs-surveys/


#remove the last rows (tail info)
testFrame<-testFrame[-52:-58,]
#remove the ‘dot’ from the state name
testFrame$stateName <- gsub(“\\.”,””,
testFrame$stateName)
#convert the columns to actual numbers and rename
#columns
testFrame$april10census <-Numberize(testFrame$X)
testFrame$april10base <-Numberize(testFrame$X.1)
testFrame$july10pop <-Numberize(testFrame$X.2)
testFrame$july11pop <-Numberize(testFrame$X.3)
testFrame <- testFrame[,-1:-4]
#remove the old rownames, which are now confusing
rownames(testFrame) <- NULL
return(testFrame)
}

Note that we actually created an additional function, Numberize, listed on
page 87. This is because some of the code to remove commas and spaces
from a string, and then convert it into a number, was sufficiently repetitive
that it seemed to make sense to create a function call to do it—and it also
might be useful with other R data munging that we might need to do. A
lesson from our chapter on functions is that it is important and valuable to
try to automate as many of these steps as possible. So when we saw that
numbers had gotten stored as factor labels, we moved to create a general
function that would convert these to numbers. Not only does this save a lot
of future typing, but it also prevents mistakes from creeping into our
processes.

# Numberize() - Gets rid of commas and other junk and
# converts to numbers
# Assumes that the inputVector is a list of data that
# can be treated as character strings
Numberize <- function(inputVector)
{
# Get rid of commas
inputVector<-gsub(“,”,“”, inputVector)
# Get rid of spaces



inputVector<-gsub(“ ”,“”, inputVector)
return(as.numeric(inputVector))
}

Now that we have the function, let’s read in the data:
> USstatePops <- readCensus()
>
> USstatePops$april10census[1:3]
[1] 4779736 710231 6392017

This would be a great moment to practice your skills from the previous
chapter by using the str() and summary() functions on our new data object
called USstatePops. Did you notice anything interesting from the results of
these functions? One thing you might have noticed is that there are 51
observations instead of 50. Can you guess why? If not, go back and look at
your original data from the spreadsheet or the U.S. Census site.
Now we’re ready to have some fun with a good-sized list of numbers. Here
are the basic descriptive statistics on the population of the states:

> mean(USstatePops$april10census)
[1] 6053834
> median(USstatePops$april10census)
[1] 4339367
> mode(USstatePops$april10census)
[1] “numeric”
> var(USstatePops$april10census)
[1] 4.656676e+13
> sd(USstatePops$april10census)
[1] 6823984

Some great summary information there, but wait—a couple things have
gone awry:

The mode() function has returned the data type of our vector of
numbers instead of the statistical mode. As we previously discussed,
the basic R package does not have a statistical mode function! This is
partly due to the fact that the mode is only useful in a very limited set
of situations, but as we saw previously, there is an add-on package,
modeest, that can be used to get the statistical mode through the
function mfv.



The variance is reported as 4.656676e+13. This is the first time that we
have seen the use of scientific notation in R. If you haven’t seen this
notation before, the way you interpret it is to imagine 4.656676
multiplied by 10,000,000,000,000 (also known as 10 raised to the 13th
power). You can see that this is 10 trillion, a huge and unwieldy
number, and that is why scientific notation is used. If you would prefer
not to type all of that into a calculator, another trick to see what
number you are dealing with is just to move the decimal point 13 digits
to the right.

Using Histograms to Understand a Distribution
Other than these two issues, we now know that the average population of a
U.S. state is 6,053,834 with a standard deviation of 6,823,984. You might
be wondering, What does it mean to have a standard deviation of almost 7
million? The mean and the standard deviation are OK, and they certainly
are mighty precise, but for most of us, it would make much more sense to
have a picture that shows the central tendency and the dispersion of a large
set of numbers. So here we go. Run this command:

> hist(USstatePops$april10census)
You should get the output shown in Figure 9.1.
Figure 9.1



A histogram is a specialized type of bar graph designed to show
frequencies. The word frequencies here means how often a particular value
or range of values occurs in a data set. This histogram shows a very
interesting picture. There are nearly 30 states with populations under 5
million, another 10 states with populations under 10 million, and then a
very small number of states with populations greater than 10 million.
Having said all that, how do we glean this kind of information from the
graph? First, look along the Y-axis (the vertical axis on the left) for an
indication of how often the data occur. The tallest bar is just to the right of
this and it is nearly up to the 30 mark. To know what this tall bar represents,
look along the X-axis (the horizontal axis at the bottom) and see that there
is a tick mark for every two bars. We see scientific notation under each tick
mark. The first tick mark is 1e+07, which translates to 10,000,000. So each
new bar (or an empty space where a bar would go) goes up by 5 million in
population. With these points in mind it should now be easy to see that
there are nearly 30 states with populations under 5 million.



If you think about presidential elections, or the locations of schools and
businesses, or how a single U.S. state might compare with other countries in
the world, it is interesting to know that there are two really giant states and
then lots of much smaller states. Once you have some practice reading
histograms, all the knowledge is available at a glance.
On the other hand, there is something unsatisfying about this diagram. With
more than 40 of the states clustered into the first couple of bars, there might
be some more details hiding in there that we would like to know about. This
concern translates into the number of bars shown in the histogram. There
are eight shown here, so why did R pick eight?
The answer is that the hist() function has an algorithm, or recipe, for
deciding on the number of categories/bars to use by default. The number of
observations and the spread of the data and the amount of empty space there
would be are all taken into account. Fortunately, it is possible and easy to
ask R to use more or fewer categories/bars with the breaks parameter, like
this:

hist(USstatePops$april10census, breaks=20)
Figure 9.2



This gives us five bars per tick mark, or about 2 million for each bar. So the
new histogram, shown in Table 9.2, shows very much the same pattern as
before: 15 states with populations under 2 million. The pattern that you see
here is referred to as a distribution. This is a distribution that starts off tall
on the left and swoops downward quickly as it moves to the right. You
might call this a reverse-J distribution because it looks a little like the shape
a J makes, although flipped around vertically. More technically, this could
be referred to as a Pareto distribution (named after the economist Vilfredo
Pareto). We don’t have to worry about why it might be a Pareto distribution
at this stage, but we can speculate on why the distribution looks the way it
does. First, you can’t have a state with no people in it or, worse yet, a
negative population. It just doesn’t make any sense. So a state has to have at
least a few people in it, and if you look through U.S. history every state
began as a colony or a territory that had at least a few people in it. On the
other hand, what does it take to grow really large in population? You need a
lot of land, first, and then a good reason for lots of people to move there or



lots of people to be born there. So there are lots of limits to growth: Rhode
Island is too small to have a bazillion people in it, and Alaska, although it
has tons of land, is too cold for lots of people to want to move there. So all
states probably started small and grew, but it is very difficult to grow really
huge. As a result, we have a distribution where most of the cases are
clustered near the bottom of the scale and just a few push up higher and
higher. But as you go higher, there are fewer and fewer states that can get
that big, and by the time you are out at the end, there’s only one state that
has managed to grow to be in excess of 30 million people. By the way, do
you know or can you guess what that humongous state is?
Normal Distributions
There are lots of other distribution shapes. The most common one that
almost everyone has heard of is sometimes called the bell curve because it
is shaped like a bell. The technical name for this is the normal distribution.
The term normal was first introduced by Carl Friedrich Gauss (1777–1855),
who supposedly called it that in a belief that it was the most typical
distribution of data that one might find in natural phenomena. The
histogram in Figure 9.3 depicts the typical bell shape of the normal
distribution.
If you are curious, you might be wondering how R generated the histogram
in Figure 9.3, and if you are alert, you might notice that the histogram that
appears above has the word “rnorm” in a couple of places. Here’s another
of the cool features in R: It is incredibly easy to generate fake data to work
with when solving problems or giving demonstrations. The data in this
histogram were generated by R’s rnorm() function, which generates a
random data set that fits the normal distribution (more closely if you
generate a lot of data, less closely if you generate only a little). Some
further explanation of the rnorm() command will make sense if you
remember that the state population data we were using had a mean of
6,053,834 and a standard deviation of 6,823,984. The command used to
generate this histogram was
Figure 9.3



hist(rnorm(51, 6043834, 6823984))
The data shown in the histogram in Figure 9.3 are an approximation of what
the distribution of state populations might look like if, instead of being a
reverse-J distribution (also called Pareto distribution), they were normally
distributed. Note that this is our first use of a nested function call: The hist()
function that generates the graph surrounds the rnorm() function that
generates the new fake data. (Pay close attention to the parentheses!) The
inside function, rnorm(), is run by R first, with the results of that sent
directly and immediately into the hist() function.
Of course, if we are generating a histogram that others need to look at, the
title and x-axis label could be improved. Luckily, that is easy to do in R:

hist(rnorm(51, 6043834, 6823984),
main=“Example of Normal Distribution”,
xlab=“Distribution with a Mean of 6,043,834 and standard deviation of
6,823,984”)

Figure 9.4



The normal distribution is used extensively through applied statistics as a
tool for making comparisons. For example, look at the right-most bar in
Figure 9.4. The label just to the right of that bar is 3e+07, or 30,000,000.
We already know from our real state population data that there is only one
actual state with a population in excess of 30 million (if you didn’t look it
up, it is California). So if all of a sudden, someone mentioned to you that he
or she lived in a state, other than California, that had 30 million people, you
would automatically think to yourself, “Wow, that’s unusual and I’m not
sure I believe it.” And the reason that you found it hard to believe was that
you had a distribution to compare it to. Not only did that distribution have a
characteristic shape (e.g., reverse-J shaped, or bell shaped, or some other
shape), it also had a center point, which was the mean, and a spread, which
in this case was the standard deviation. Armed with those three pieces of
information—the type/shape of distribution, an anchoring point, and a
spread (also known as the amount of variability)—you have a powerful tool
for making comparisons.
In the next chapter, we will conduct some of these comparisons to see what
we can infer about the ways things are, in general, based on just a subset of



available data, or what statisticians call a sample.
Chapter Challenge
In this chapter, we used rnorm() to generate random numbers
that closely fit a normal distribution. We also learned that the
state population data was a Pareto distribution. Do some
research to find out which R function generates random
numbers using the Pareto distribution. There are two key
parameters for the Pareto function—location and dispersion.
The location helps define the numbers along the X-axis. In other
words, the shape doesn’t change, but changing the location
changes the scale of the X-axis. The dispersion (sometimes
known as shape) defines how fast the distribution goes down
(the larger the shape, the more spread out the values will be). It’s
best to experiment with different values to get a feel for the
function, then to run that function with the correct parameters to
generate 51 random numbers. (Hint: Experiment with different
probability values.) Create a histogram of these random
numbers and describe the shape of the distribution.

Sources
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Pareto_distribution
http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/William_Sealy_Gosset
http://en.wikipedia.org/wiki/Normal_distribution
http://www2.census.gov/programs-surveys/popest/
http://www.r-tutor.com/elementary-statistics/numerical-
measures/standard-deviation
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10 Sample in a Jar
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Learning Objectives
Create and interpret sampling distributions.
Use R to repeat sampling.
Explain the effects of randomness when one samples a
population.
Explain the law of large numbers and the central limit theorem.
Demonstrate how to use the following R functions: quantile,
replicate, sample, sd, summary.

Imagine a gumball jar full of gumballs of two colors, red and blue. The jar
was filled from a source that provided 100 red gumballs and 100 blue
gumballs, but when they were all poured into the jar they got mixed
together. If you drew eight gumballs from the jar at random, what colors
would you get? If things worked out perfectly, which they rarely do, you
would get four red and four blue. This is half and half, the same ratio of red
and blue that is in the jar as a whole. Of course, it rarely works out this way,
does it? Instead of getting four red and four blue, you might get three red
and five blue, or any other mix you can think of. In fact, it would be
possible, though perhaps not likely, to get eight red gumballs. The basic
situation, though, is that we really don’t know what mix of red and blue we
will get with one draw of eight gumballs. That’s uncertainty for you, the
forces of randomness affecting our sample of eight gumballs in
unpredictable ways.
Here’s an interesting idea, though, that is no help at all in predicting what
will happen in any one sample but is great at showing what will occur in the
long run. Pull eight gumballs from the jar, count the number of red ones,
and then throw them back. We do not have to count the number of blue
gumballs because we can subtract the number of red gumballs from the
total (eight gumballs) to know the number of blue gumballs. Mix up the jar
again, then draw eight more gumballs, and count the number of red.
Keeping doing this many times. Table 10.1 is an example of what you
might get.



Notice that the left-hand column is just counting the number of sample
draws we have done. The right-hand column is the interesting one because
it is the count of the number of red gumballs in each particular sample draw.
In this example, things are all over the place. In sample draw 4 we only
have two red gumballs, but in sample draw 3 we have six red gumballs. But
the most interesting part of this example is that if you average the number
of red gumballs over all of the draws, the average comes out to exactly four
red gumballs per draw, which is what we would expect in a jar that is half
and half. Now this is a contrived example and we won’t always get such a
perfect result so quickly, but if you did 4,000 draws instead of four, you
would get pretty close to the perfect result.
This process of repeatedly drawing a subset from a population is called
sampling, and the end result of doing lots of sampling is a sampling
distribution. Note that we are using the word population in the previous
sentence in its statistical sense to refer to the totality of units from which a
sample can be drawn. It is just a coincidence that our data set contains the
number of people in each state and that this value is also referred to as
population. Next, we will get R to help us draw lots of samples from our
U.S. state data set.
Sampling in R
Conveniently, R has a function called sample(), that will draw a random
sample from a data set with just a single call. We can try it now with our
state data:

> sample(USstatePops$april10census, size=8,



+ replace=TRUE)
[1] 4533372 19378102 897934 1052567 672591 18801310
[7] 2967297 5029196

As a matter of practice, note that we called the sample() function with three
arguments. The first argument was the data source. For the second and third
arguments, rather than rely on the order in which we specify the arguments,
we have used named arguments to make sure that R does what we want it
to. The size=8 argument asks R to draw a sample of 8 state data values. The
replace=TRUE argument specifies a style of sampling that statisticians use
very often to simplify the mathematics of their proofs. For us, sampling
with or without replacement does not usually have any practical effects, so
we will just go with what the statisticians typically do.
When we’re working with numbers such as these state values, instead of
counting gumball colors we’re more interested in finding out the average,
or what you now know as the mean. So we could also ask R to calculate a
mean() of the sample for us:

> mean(sample(USstatePops$april10census,size=16,
+ replace=TRUE))
[1] 8198359

There’s the nested function call again. The output no longer shows the 8
values that R sampled from the list of 51. Instead, it used those 8 values to
calculate the mean and display that for us. If you have a good memory, or
merely took the time to look in the last chapter, you will remember that the
actual mean of our 51 observations is 6,053,834. So the mean that we got
from this one sample of 8 states is really not even close to the true mean
value of our 51 observations. Are we worried? Definitely not! We know
that when we draw a sample, whether it is gumballs or states, we will
almost never hit the true population mean right on the head.
Repeating Our Sampling
We’re interested not in any one sample but in what happens over the long
haul. So now we’ve got to get R to repeat this process for us, not once, not
four times, but 400 or 4,000 times. Like most programming languages, R
has a variety of ways of repeating an activity. One of the easiest ones to use
is the replicate() function. To start, let’s just try four replications:

> replicate(4, mean(sample(USstatePops$april10census,



+ size=8,replace=TRUE)),simplify=TRUE)
[1] 10300486 11909337 8536523 5798488

Couldn’t be any easier. We took the exact same command as before, which
was a nested function to calculate the mean() of a random sample of 8
states. This time, we put that command inside the replicate() function so we
could run it over and over again. The simplify=TRUE argument asks R to
return the results as a simple vector of means, perfect for what we are trying
to do. We ran it only four times so that we would not have a big screen full
of numbers. From here, though, it is easy to ramp up to repeating the
process 400 times. You can try that and see the output, but for here in the
book we will encapsulate the whole replicate function inside another
mean() so that we can get the average of all 400 of the sample means. Here
we go:

> mean(replicate(400,mean(
+ sample(USstatePops$april10census, size=8,
+ replace = TRUE)), simplify=TRUE))
[1] 5958336

In the command above, the outermost mean() command is what is different
from the previous command. So, put into words, this deeply nested
command accomplishes the following: (a) Draws 400 samples of size n = 8
from our full data set of 51 states. (b) Calculates the mean from each
sample and keeps it in a list. (c) When finished with the list of 400 of these
means, calculates the mean of that list of means. You can see that the mean
of 400 sample means is 5,958,336. Now that is still not the exact value of
the whole data set, but it is getting close. We’re off by about 95,000, which
is roughly an error of about 1.6% (more precisely, 95,498/6,053,834 =
1.58%. You might have also noticed that it took a little while to run that
command, even if you have a fast computer. There’s a lot of work going on
there! Let’s push it farther and see if we can get closer to the true mean for
all of our data:

> mean(replicate(4000, mean(
+ sample(USstatePops$april10census, size=8,
+ replace = TRUE)), simplify=TRUE))
[1] 6000972

Now we are even closer! We are now less than 1% away from the true
population mean value. Note that the results you get might be different,



because when you run the commands, each of the 400 or 4,000 samples that
is drawn will be slightly different than the ones that were drawn for the
commands above. What will not be much different is the overall level of
accuracy.
We’re ready to take the next step. Instead of summarizing our whole
sampling distribution in a single average, let’s look at the distribution of
means using a histogram.
Figure 10.1

The histogram in Figure 10.1 displays the complete list of 4,000 means as
frequencies. Take a close look so that you can get more practice reading
frequency histograms. This one shows a very typical configuration that is
almost bell-shaped but still has some skewness off to the right. The tallest,
and therefore most-frequent, range of values is right near the true mean of
6,053,834.
By the way, were you able to figure out the command to generate this
histogram on your own? All you had to do was substitute hist() for the
outermost mean() in the previous command. In case you struggled, here it
is:

> hist(replicate(4000,
+ mean(sample(USstatePops$april10census,size=8,
+ replace= TRUE)), simplify=TRUE))



Law of Large Numbers and the Central Limit
Theorem
This is a great moment to take a breath. We’ve just covered a couple
hundred years of statistical thinking in just a few pages. In fact, there are
two big ideas, the law of large numbers and the central limit theorem, that
we have just partially demonstrated. These two ideas took mathematicians
including Gerolamo Cardano (1501–1576) and Jacob Bernoulli (1654–
1705) several centuries to figure out. If you look these ideas up, you might
find a lot of bewildering mathematical details, but for our purposes, there
are two really important takeaway messages. First, if you run a statistical
process a large number of times, it will converge on a stable result. For us,
we knew what the average population was of the 50 states plus the District
of Columbia. These 51 observations were our population, and we wanted to
know how many smaller subsets, or samples, of size n = 8 we would have
to draw before we could get a good approximation of that true value. We
learned that drawing one sample provided a poor result. Drawing 400
samples gave us a mean that was off by 1.5%. Drawing 4,000 samples gave
us a mean that was off by less than 1%. If we had kept going to 40,000 or
400,000 repetitions of our sampling process, we would have come
extremely close to the actual average of 6,053,384
Second, when we are looking at sample means, and we take the law of large
numbers into account, we find that the distribution of sampling means starts
to create a bell-shaped or normal distribution, and the center of that
distribution—the mean of all of those sample means—gets really close to
the actual population mean. It gets closer faster for larger samples; in
contrast, for smaller samples you have to draw lots and lots of them to get
really close. Just for fun, let’s illustrate this with a sample size that is larger
than 8. Here’s a run that repeats only 100 times, but each time draws a
sample of n = 51 (equal in size to the population):

> mean(replicate(100, mean(
+ sample(USstatePops$april10census,size =
+ 51,replace = TRUE)), simplify=TRUE))
[1] 6114231

Now, we’re off from the true value of the population mean by only about
0.1%. You might be scratching your head now, saying, “Wait a minute. Isn’t



a sample of 51 the same thing as the whole list of 51 observations?” This is
confusing, but it goes back to the question of sampling with replacement
that we examined a couple of pages ago (and that appears in the command
above as replace=TRUE). Sampling with replacement means that as you
draw out one value to include in your random sample, you immediately
chuck it back into the list so that, potentially, it could get drawn again either
immediately or later. As mentioned before, this practice simplifies the
underlying proofs, and it does not cause any practical problems, other than
head scratching. In fact, we could go even higher in our sample size with no
trouble:

> mean(replicate(100, mean(
+ sample(USstatePops$april10census, size=120,
+ replace=TRUE)), simplify=TRUE))
[1] 6054718

That command runs 100 replications using samples of size n = 120. Look
how close the mean of the sampling distribution is to the population mean
now! Remember that this result will change a little every time you run the
procedure, because different random samples are being drawn for each run.
But the rule of thumb is that the larger your sample size, what statisticians
call n, the closer your estimate will be to the true value. Likewise, the more
trials you run, the closer your population estimate will be.
So, if you’ve had a chance to catch your breath, let’s move on to making
use of the sampling distribution. First, let’s save one distribution of sample
means so that we have a fixed set of numbers to work with:

> SampleMeans <- replicate(10000,
+ mean(sample(USstatePops$april10census,size =
+ 5, replace = TRUE)), simplify=TRUE)

We’re saving a distribution of sample means to a new vector called
SampleMeans. We should have 10,000 of them:

> length(SampleMeans)
[1] 10000

And the mean of all of these means should be pretty close to our population
mean of 6,053,384:

> mean(SampleMeans)
[1] 6065380



You might also want to run a histogram on SampleMeans and see what the
frequency distribution looks like. Right now, all we need to look at is a
summary of the list of sample means:

> summary(SampleMeans)
Min. 1st Qu. Median Mean 3rd Qu. Max.
799100 3853000 5370000 6065000 7622000 25030000

As a reminder, the 1st Qu. (first quartile) is the value that divides the first
quarter of the cases from the other three quarters. Median refers to the value
of the case that splits the whole group in half, with half of the cases having
higher values and half having lower values. The median is also the dividing
line that separates the second quartile from the third quartile. If you need a
refresher on the median and quartiles, take a look back at Chapter 5, “Rows
and Columns.”
This summary is full of useful information. First, take a look at the max and
the min. The minimum sample mean in the list was 799,100. Think about
that for a moment. How could a sample have a mean that small when we
know that the true mean is much higher? Wyoming must have been drawn
several times in that sample! The answer comes from the randomness
involved in sampling. If you run a process 10,000 times you are definitely
going to end up with a few weird examples. It’s almost like buying a lottery
ticket. The vast majority of tickets are the usual—not a winner. Once in a
great while, though, there is a very unusual ticket—a winner. Sampling is
the same: The extreme events are unusual, but they do happen if you run the
process enough times. The same goes for the maximum: At 25,030,000 the
maximum sample mean is much higher than the true mean.
At 5,370,000 the median is quite close to the mean but not exactly the same
because we still have a little rightward skew. (The tail on the high side is
slightly longer than it should be because of the shape of the original
distribution.) The median is very useful because it divides the sample
exactly in half: 50%, or exactly 5,000 of the sample means are larger than
5,370,000, and the other 50% are lower. So if we were to draw one more
sample from the population it would have a 50–50 chance of being above
the median. The quartiles help us to cut things up even more finely. The
third quartile divides up the bottom 75% from the top 25%. So only 25% of
the sample means are higher than 7,622,000. That means if we drew a new
sample from the population that there is only a 25% chance that it will be



larger than that. Likewise, in the other direction, the first quartile tells us
that there is only a 25% chance that a new sample would be less than
3,853,000.
There is a slightly different way of getting the same information from R that
will prove more flexible for us in the long run. The quantile() function can
show us the same information as the median and the quartiles, like this:

> quantile(SampleMeans, probs=c(0.25,0.50,0.75))
  25% 50% 75%
3853167 5370314 7621871

You will notice that the values are just slightly different, by less than 0.1%,
than those produced by the summary() function. These are actually more
precise, although the less-precise ones from summary() are fine for most
purposes. One reason to use quantile() is that it lets us control exactly where
we make the cuts. To get quartiles, we cut at 25% (0.25 in the command just
above), at 50%, and at 75%. But what if we wanted instead to cut at 2.5%
and 97.5%? Easy to do with quantile():

> quantile(SampleMeans, probs=c(0.025,0.975))
2.5% 97.5%
2014580 13537085

So, this result shows that, if we drew a new sample, there is only a 2.5%
chance that the mean would be lower than 2,014,580. Likewise, there is
only a 2.5% chance that the new sample mean would be higher than
13,537,085 (because 97.5% of the means in the sampling distribution are
lower than that value).
Comparing Two Samples
Now let’s put this knowledge to work. Here is a sample of the number of
people in a certain area, where each of these areas is some kind of a unit
associated with the United States:

3,706,690159,358106,40555,51953,883
We can easily get these into R and calculate the sample mean:

> MysterySample <- c(3706690, 159358, 106405,
+ 55519, 53883)
> mean(MysterySample)
[1] 816371



The mean of our mystery sample is 816,371. The question is, Is this a
sample of U.S. states or is it something else? Just on its own it would be
hard to tell. The first observation in our sample has more people in it than
Kansas, Utah, Nebraska, and several other states. We also know from
looking at the distribution of raw population data from our previous
example that there are many, many states that have very few people. Thanks
to the work we’ve done earlier in this chapter, however, we have an
excellent basis for comparison. We have the sampling distribution of means,
and it is fair to say that if we get a new mean to look at, and the new mean
is way out in the extreme areas of the sample distribution, say, below the
2.5% mark or above the 97.5% mark, then it seems much less likely that our
MysterySample is a sample of states.
In this case, we can see quite clearly that 816,371 is on the extreme low end
of the sampling distribution. Recall that when we ran the quantile()
command we found that only 2.5% of the sample means in the distribution
were smaller than 2,014,580.
In fact, we could even play around with a more stringent criterion:

> quantile(SampleMeans, probs=c(0.005,0.995))
0.5% 99.5%
1410883 16792211

This quantile() command shows that only 0.5% of all the sample means are
lower than 1,410,883. So our MysterySample mean of 816,371 would
definitely be a very rare event, if it were truly a sample of states. From this
we can infer, tentatively but based on good statistical evidence, that our
MysterySample is not a sample of states. The mean of MysterySample is
just too small to be very likely to be a sample of states.
And this is in fact correct: MysterySample contains the number of people in
five different U.S. territories, including Puerto Rico in the Caribbean and
Guam in the Pacific. These territories are land masses and groups of people
associated with the United States, but they are not states, and they are
different from states in many ways. For one thing, they are all islands, so
they are limited in land mass. Among the U.S. states, only Hawaii is an
island, and it is actually bigger than 10 of the states in the continental
United States. The important thing to take away is that the characteristics of
this group of data points, notably the mean of this sample, was sufficiently
different from a known distribution of means that we could make an



inference that the sample was not drawn from the original population of
data.
This reasoning is the basis for virtually all statistical inference. You
construct a comparison distribution, you mark off a zone of extreme values,
and you compare any new sample of data you get to the distribution to see
if it falls in the extreme zone. If it does, you tentatively conclude that the
new sample was obtained from some source other than what you used to
create the comparison distribution.
If you feel confused, take heart. There’s 400 to 500 years of mathematical
developments represented in that one preceding paragraph. Also, before we
had cool programs like R that could be used to create and analyze actual
sample distributions, most of the material above was taught as a set of
formulas and proofs. Yuck! Now let’s take note of three additional pieces of
information.
First, we looked at the mean of the sampling distribution with mean(), and
we looked at its shaped with hist(), but we never quantified the spread of
the distribution:

> sd(SampleMeans)
[1] 3037318

This shows us the standard deviation of the distribution of sampling means.
Statisticians call this the standard error of the mean. This chewy phrase
would have been clearer, although longer, if it had been something like this:
“The standard deviation of the distribution of sample means for samples
drawn from a population.” Unfortunately, statisticians are not known for
giving things clear labels. Suffice to say that when we are looking at a
distribution and each data point in that distribution is itself a representation
of a sample (e.g., a mean), then the standard deviation is referred to as the
standard error.
Second, there is a shortcut to finding out the standard error that does not
require actually constructing an empirical distribution of 10,000 (or any
other number) of sampling means. It turns out that the standard deviation of
the original raw data and the standard error are closely related by some
simple algebra:

> sd(USstatePops$april10census)/sqrt(5)
[1] 3051779



The formula in this command takes the standard deviation of the original
state data and divides it by the square root of the sample size. Remember
three or four pages ago, when we created the SampleMeans vector by using
the replicate() and sample() commands, we used a sample size of n = 5.
That’s what you see in the formula above, inside of the sqrt() function. In R
and other software, sqrt() is the abbreviation for square root and not for
squirt as you might expect. So if you have a set of observations and you
calculate their standard deviation, you can also calculate the standard error
for a distribution of means (each of which has the same sample size), just
by dividing by the square root of the sample size. You might notice that the
number we got with the shortcut was slightly larger than the number that
came from the distribution itself, but the difference is not meaningful (and
only arises because of randomness in the distribution). Another thing you
might have noticed is that the larger the sample size, the smaller the
standard error. This leads to an important rule for working with samples: the
bigger, the better.
The last thing is another shortcut. We found out the 97.5% cut point by
constructing the sampling distribution and then using quantile to tell us the
actual cuts. You can also cut points just using the mean and the standard
error. Two standard errors down from the mean is the 2.5% cut point, and
two standard errors up from the mean is the 97.5% cut point.

> StdError <- sd(USstatePops$april10census)/sqrt(5)
> CutPoint975 <- mean(USstatePops$april10census)+(2 *
+ StdError)
> CutPoint975
[1] 12157391

You will notice again that this value is different from what we calculated
with the quantile() function using the empirical distribution. The differences
arise because of the randomness in the distribution that we constructed. The
preceding value is an estimate that is based on statistical proofs, whereas
the empirical SampleMeans list that we constructed is just one of a nearly
infinite range of such lists that we could create. We could easily reduce the
discrepancy between the two methods by using a larger sample size and by
having more replications included in the sampling distribution.
To summarize, with a data set that includes 51 data points with the numbers
of people in states, and some work using R to construct a distribution of



sampling means, we have learned the following:
Run a statistical process a large number of times and you get a
consistent pattern of results.
Taking the means of a large number of samples and plotting them on a
histogram shows that the sample means are fairly well normally
distributed and that the center of the distribution is very, very close to
the mean of the original raw data.
This resulting distribution of sample means can be used as a basis for
comparisons. By making cut points at the extreme low and high ends
of the distribution, for example, 2.5% and 97.5%, we have a way of
comparing any new information we get.
If we get a new sample mean, and we find that it is in the extreme zone
defined by our cut points, we can tentatively conclude that the sample
that made that mean is a different kind of thing from the samples that
made the sampling distribution.
A shortcut and more-accurate way of figuring the cut points involves
calculating the standard error based on the standard deviation of the
original raw data.

We’re not statisticians at this point, but the process of reasoning based on
sampling distributions is at the heart of inferential statistics, so if you have
followed the logic presented in this chapter, you have made excellent
progress toward being a competent user of applied statistics.

Chapter Challenge
Collect a sample consisting of at least 20 data points and
construct a sampling distribution. Calculate the standard error
and use this to calculate the 2.5% and 97.5% distribution cut
points. The data points you collect should represent instances of
the same phenomenon. For instance, you could collect the prices
of 20 textbooks or count the number of words in each of 20
paragraphs.

Sources
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Gerolamo_Cardano
http://en.wikipedia.org/wiki/Jacob_Bernoulli
http://en.wikipedia.org/wiki/Law_of_large_numbers

http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Gerolamo_Cardano
http://en.wikipedia.org/wiki/Jacob_Bernoulli
http://en.wikipedia.org/wiki/Law_of_large_numbers


http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories
_by_population
http://www.khanacademy.org/math/statistics/v/central-limit-
theorem
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Learning Objectives
Recognize the different data sources that are available for R
analysis.
Use RStudio to import data.
Build R code to access data that are available in Excel, JSON,
and an SQL database.
Use the sqldf package to access a dataframe as if it was a
database.
Use the R sapply and tapply functions to do summary analysis
on a dataframe.
Understand how to use loops in R.
Demonstrate the following R functions: getURL, fromJSON,
read.xls, str_replace, dbConnect, dbGetQuery, dbListTables,
dbWriteTable, unlist, matrix, sqldf, tapply.



Most people who have watched the evolution of technology over recent
decades remember a time when storage was expensive and had to be
hoarded like gold. Over the past few years, however, the accelerating trend
of Moore’s Law has made data storage almost “too cheap to meter” (as they
used to predict about nuclear power). Although this opens many
opportunities, it also means that people keep data around for a long time,
since it doesn’t make sense to delete anything, and they might keep data
around in many different formats. As a result, the world is full of different
data formats, some of which are proprietary—designed and owned by a
single company such as SAS—and some of which are open, such as the
lowly but infinitely useful comma-separated variable, or CSV format.
In fact, one of the basic dividing lines in data formats is whether data are
human readable or not. Formats that are not human readable, often called
binary formats, are very efficient in terms of how much data they can pack
in per kilobyte but are also squirrelly in the sense that it is hard to see what
is going on inside the format. As you might expect, human readable formats
are inefficient from a storage standpoint but are easy to diagnose when
something goes wrong. For high-volume applications, such as credit card
processing, the data that are exchanged between systems are almost
universally in binary formats. When data sets are archived for later reuse,
for example, in the case of government data sets available to the public,
they are usually available in multiple formats, at least one of which is a
human readable format.
Another dividing line, as mentioned earlier, is between proprietary and open
formats. One of the most common ways of storing and sharing small data
sets is as Microsoft Excel spreadsheets. Although this is a proprietary
format, owned by Microsoft, it has also become a kind of informal and very
common standard. Dozens of different software applications can read Excel
formats (and there are several different formats that match different
versions of Excel). In contrast, the OpenDocument format is an open
format, managed by a standards consortium, that anyone can use without
worrying what the owner might do. OpenDocument format is based on
XML, which stands for extensible markup language. XML is a whole topic
in and of itself, but briefly it is a data exchange format designed specifically
to work on the Internet and is both human and machine readable. XML is



managed by the W3C consortium, which is responsible for developing and
maintaining the many standards and protocols that support the web.
As an open source program with many contributors, R offers a wide variety
of methods of connecting with external data sources. This is both a blessing
and a curse. There is a solution to almost any data access problem you can
imagine with R, but there is also a dizzying array of options available such
that it is not always obvious what to choose. We’ll tackle this problem in
two different ways.
In the first part of this chapter we will build on our readCensus function and
look at methods for importing existing data sets. These might exist on a
local computer or on the Internet, but the characteristic they have in
common is that they are contained (usually) within one single file. The
main trick here is to choose the right command to import those data into R.
In the second half of the chapter, we will consider a different strategy,
namely, linking to a source of data that is not a file. Many data sources,
particularly databases, exist not as a single discrete file, but rather as a
system. The system provides methods or calls to query data from the
system, but from the perspective of the user (and of R) the data never really
take the form of a file.
Importing Data Using RStudio
The first and easiest strategy for getting data into R is to use the data import
dialog in RStudio. In the upper-right-hand pane of RStudio, the Workspace
tab gives views of currently available data objects, but also has a set of
buttons at the top for managing the work space. One of the choices there is
the Import Dataset button: This enables a drop-down menu where one
choice is to import From CSV . . . . If you click this option and choose an
appropriate file, you will get a screen that looks like Figure 11.1.
The most important stuff is on the bottom-left side. Heading controls
whether or not the first line of the text file is treated as containing variable
names. The deliminator drop-down gives a choice of different characters
that separate the fields/columns in the data. RStudio tries to guess the
appropriate choice here based on a scan of the data. In this case, it guessed
right by choosing comma. As mentioned earlier, tab-delimited and comma-
delimited are the two most common formats used for interchange between
data programs. There are other controls such as if the first row has names



for each of column columns and a Quote drop-down, which controls which
character is used to contain quoted string/text data. The most common
method is double quotes. On the lower-right part of the screen we can also
see the code that will be generated when we import the data set.
Of course, we skipped ahead here because we assumed that an appropriate
file of data was available. It might be useful to see some examples of
human readable data:
Figure 11.1

Name, Age, Gender
“Fred”,22,“M”
“Ginger”,21,“F“

The above is a very simple example of a comma-delimited file where the
first row contains a header, meaning the information about the names of
variables for each of the columns. The second and subsequent rows contain
actual data. Each field is separated by a comma, and the text strings are
enclosed in double quotes. The same file tab-delimited might look like this:



Of course you can’t see the tab characters on the screen, but there is one tab
character in between each pair of values. In each case, for both comma- and
tab-delimited, one line equals one row. The end of a line is marked,
invisibly, with a so-called newline character. On occasion, you might run
into differences between different operating systems on how this end-of-
line designation is encoded.
Files containing comma- or tab-delimited data are very common across the
Internet, but sometimes we would like to gain direct access to binary files in
other formats. There are a variety of packages that one might use to access
binary data. A comprehensive access list appears here:

http://cran.r-project.org/doc/manuals/R-data.html
This page shows a range of methods for obtaining data from a wide variety
of programs and formats. In this chapter, we will explore how to read in a
data set using three very common methods. First, we will read in an Excel
file. As you will see, this will be very similar to how we read in the CSV
format. We will also read a data set that is available via a database and via
Java Script Object Notation (JSON), which is a structured, but human
readable, way of sharing data; JSON is an increasingly common way of
sharing data on the web.
Accessing Excel Data
Because Excel is such a widely used program for small, informal data sets,
we will start with an example here to illustrate both the power and the
pitfalls of accessing binary data with R. While we could read an Excel file
in a similar way to how we just read in the CSV file (via the import dataset
menu), we can also read the file directly in R. There are certainly many
packages available to help us read in an Excel file. Interestingly, this is one
area where Mac and Linux users are at a disadvantage relative to Windows
users. This is perhaps because Excel is a Microsoft product, originally

http://cran.r-project.org/doc/manuals/R-data.html


written to be native to Windows, and as a result it is easier to create tools
that work with Windows. One example noted here is the package called
RODBC. The abbreviation ODBC stands for open database connection, and
this is a Windows facility for exchanging data among Windows programs.
Although there is a proprietary ODBC driver available for the Mac, most
Mac users will want to try a different method for getting access to Excel
data. Another Windows-only package for R is called xlsReadWrite. This
package provides convenient one-command calls for importing data directly
from Excel spreadsheets or exporting it directly to spreadsheets.
Fortunately, a general-purpose data manipulation package called gdata
provides essential facilities for importing spreadsheet files. In the example
that follows, we will use a function from gdata to read Excel data directly
from a website. The gdata package is a kind of Swiss Army knife package
containing many different functions for accessing and manipulating data.
For example, you might recall that R uses the value NA to represent
missing data. Frequently, however, it is the case that data sets contain other
values, such as 999, to represent missing data. The gdata package has
several functions that find and transform these values to be consistent with
R’s strategy for handling missing data.
Begin by using install.package() and library() functions to prepare the gdata
package for use:

> install.packages(“gdata”)
# ... lots of output here
> library(“gdata”)
gdata: read.xls support for ‘XLS’ (Excel 97-2004)
files
gdata: ENABLED.
gdata: read.xls support for ‘XLSX’ (Excel 2007+) files
ENABLED.

It was important here to see the output from the library() function. Note that
the gdata package reported some diagnostics about the different versions of
Excel data that it supports. Note that this is one of the major drawbacks of
binary data formats, particularly proprietary ones: you have to make sure
that you have the right software to access the different versions of data that
you might encounter. In this case, it looks like we are covered for the early
versions of Excel (1997–2004) as well as later versions of Excel (2007+).



We must always be on the lookout, however, for data that are stored in even
newer versions of Excel that might not be supported by gdata or other
packages.
Now that gdata is installed, we can use the read.xls() function that it
provides. The documentation for the gdata package and the read.xls()
function is located here:

http://cran.r-project.org/web/packages/gdata/gdata.pdf
A review of the documentation reveals that the only required argument to
this function is the location of the XLS file, and that this location can be a
pathname, a web location with http, or an Internet location with ftp (file
transfer protocol, a way of sending and receiving files without using a web
browser).
If you think back to an early chapter in this book, you hopefully remember
that we accessed some census data that had population counts for all the
different U.S. states. Previously, we read the data in a CSV format. For this
example, we are going to read the Excel file containing that data directly
into a dataframe using the read.xls() function:

The command in the first three lines above provides the URL of the Excel
file to the read.xls() function. The subsequent lines of output show the
function attempting to open the URL, succeeding, and downloading 30
kilobytes of data.

http://cran.r-project.org/web/packages/gdata/gdata.pdf


Next, let’s take a look at what we got back by using the str() function to
create a summary of the structure of testFrame:

This looks very, very similar to the results of the read.csv function we had
previously used to read the comma separated file in an earlier chapter. Not
surprisingly, the cleanup is also very similar. As a review, we will briefly go
through the steps required to clean up the dataframe. If you need more of a
review, please go back and reread the readCensus discussion in Chapter 9.
First, the Census Bureau put in header rows that we can eliminate:

> testFrame<-testFrame[-1:-8,]
As a reminder, the minus sign used inside the square brackets refers to the
index of rows that should be eliminated from the dataframe. So the notation
-1:-3 gets rid of the first three rows. We also leave the column designator
empty so that, for now, we can keep all columns. So the interpretation of the
notation within the square brackets is that rows 1 through 3 should be
dropped, all other rows should be included, and all columns should be



included. We assign the result back to the same data object, thereby
replacing the original with our new, smaller, cleaner version.
Next, we know that of the 10 variables we got from read.xls(), only the first
five are useful to us (the last five seem to be blank). So this command keeps
the first five columns of the dataframe:

> testFrame <- testFrame[,1:5]
In the same vein, the tail() function shows us that the last few rows just
contained some Census Bureau notes. So we can safely eliminate those like
this:

> testFrame <- testFrame[-52:-62,]
Now we are ready to perform a couple of data transformations. Before we
start these, let’s give our first column a more reasonable name:

> testFrame$stateName <- testFrame[,1]
We’ve used the little hack here to avoid typing out the ridiculously long
name of that first variable/column. We’ve used the column notation in the
square brackets on the right-hand side of the expression to refer to the first
column (the one with the ridiculous name) and simply copied the data into a
new column titled stateName. Let’s also remove the offending column with
the stupid name so that it does not cause us problems later on:

> testFrame <- testFrame[,-1]
Next, we can change formats and data types as needed. We can remove the
dots from in front of the state names very easily with str_replace():

> testFrame$stateName <-
+  str_replace(testFrame$stateName,“\\.”,“”)

The function str_replace() is part of the stringr package, and you will have
to use install.packages() and library() to load it if it is not already in place.
We previously used gsub, which is a similar function, but gsub replaces
each occurrence, whereas str_replace replaces just the first occurrence (of
the dot character [.] in our example). The two backslashes in the string
expression above are called escape characters, and they force the dot that
follows to be treated as a literal dot rather than as a wildcard character. The
dot on its own is a wildcard that matches one instance of any character.
Next, let’s use the Numberize function. If you remember from Chapter 9,
this function handles both unwanted commas and spaces and will convert
strings into numbers whether or not they are integers (i.e., possibly with
digits after the decimal point).



# Numberize() - Gets rid of commas and other junk and
# converts to numbers
# Assumes that the inputVector is a list of data that
# can be treated as character strings
Numberize <- function(inputVector)
{
# Get rid of commas
inputVector<-gsub(“,”,“”, inputVector)
# Get rid of spaces
inputVector<-gsub(“ ”,“”, inputVector)
return(as.numeric(inputVector))
}

So we can now run this a few times to create new vectors on the dataframe
that contain the numeric values we wanted and to remove the old columns
that have column names that are not useful.

testFrame$april10census <- Numberize(testFrame$X)
testFrame$april10base <- Numberize(testFrame$X.1)
testFrame$july10pop <- Numberize(testFrame$X.2)
testFrame$july11pop <- Numberize(testFrame$X.3)
testFrame <- testFrame[,-1:-4]

As you can see, once we read in the data file, the process of cleaning the
data file was very similar to the process used to clean the same data set in
CSV format.
Now we are ready to consider the other strategy for getting access to data:
querying it from external databases. Depending on your familiarity with
computer programming and databases, you might notice that the abstraction
is quite different here. Previously, we had a file (sometimes rather messy)
that contained a complete copy of the data that we wanted, and we read that
file into R and stored it in our local computer’s memory (and possibly later
on the hard disk for safekeeping). This is a good and reasonable strategy for
small- to medium-sized data sets, which we’ll define just for the sake of
argument as anything up to 100 megabytes.
But what if the data you want to work with is really large—too large to
represent in your computer’s memory all at once and too large to store on
your own hard drive? This situation could occur even with smaller data sets
if the data owner did not want people making complete copies of their data



but rather wanted everyone who was using it to work from one official
version of the data. Similarly, if multiple users need to share data, it is much
better to have the data in a database that was designed for this purpose. For
the most part R is a poor choice for maintaining data that must be used
simultaneously by more than one user. For these reasons, it becomes
necessary to do one or both of the following things:

Allow R to send messages to the large, remote database, perhaps via
the web, asking for summaries, subsets, or samples of the data.
Allow R to send computation requests to a distributed data processing
system asking for the results of calculations performed on the large
remote database, perhaps via a web service.

Like most contemporary programming languages, R provides several
methods for performing these two tasks. We will explore two basic ways to
access these remote data services.
Accessing a Database
The first strategy we will explore to access remote systems or data involves
using a package that provides a client that can connect up to the database
server. The R client supports sending commands—mostly in SQL,
structured query language—to the database server. The database server
returns a result to the R client, which places it in an R data object (typically
a dataframe) for use in further processing or visualization.
The R community has developed a range of client software to enable R to
connect up with other databases. Here are the major databases for which R
has client software:
RMySQL: Connects to MySQL, perhaps the most popular open source
database in the world. MySQL is the M in LAMP, which is the acronym for
Linux, Apache, MySQL, and PHP. Together, these four elements provide a
complete solution for data driven web applications.
ROracle: Connects with the widely used Oracle commercial database
package. Oracle is probably the most widely used commercial database
package. Ironically, Oracle acquired Sun Microsystems a few years ago and
Sun developers predominate in development and control of the open source
MySQL system.
RPostgreSQL: Connects with the well-developed, full-featured
PostgreSQL (sometimes just called Postgres) database system. PostgreSQL



is a much more venerable system than MySQL and has a much larger
developer community. Unlike MySQL, which is effectively now controlled
by Oracle, PostgreSQL has a developer community that is independent of
any company and a licensing scheme that allows anybody to modify and
reuse the code.
RSQlite: Connects with SQlite, another open source, independently
developed database system. As the name suggests, SQlite has a very light
code footprint, meaning that it is fast and compact.
RMongo: Connects with the MongoDB system, which is the only system
here that does not use SQL. Instead, MongoDB uses JavaScript to access
data. As such it is well suited for web development applications.
RODBC: Connects with ODBC compliant databases, which include
Microsoft’s SQLserver, Microsoft Access, and Microsoft Excel, among
others. Note that these applications are native to Windows and Windows
server, and as such the support for Linux and Mac OS is limited.
For demonstration purposes, we will use RMySQL. This requires installing
a copy of MySQL on your computer. Use your web browser to go to this
page:

http://dev.mysql.com/downloads/
Then look for the MySQL Community Server. The term community in this
context refers to the free, open source developer community version of
MySQL. Note that there are also commercial versions of SQL developed
and marketed by various companies, including Oracle. Download the
version of MySQL Community Server that is most appropriate for your
computer’s operating system and install it. Note that unlike user
applications, such as a word processor, there is no real user interface to
server software like the MySQL Community Server. Instead, this software
runs in the background, providing services that other programs can use.
This is the essence of the client-server idea. In many cases the server is on
some remote computer to which we do not have physical access. In this
case, we will run the server on our local computer so that we can complete
the demonstration.
On the Mac installation used in preparation of this chapter, after installing
the MySQL server software, it was also important to install the MySQL
Preference Pane, in order to provide a simple graphical interface for turning
the server on and off. Because we are just doing a demonstration here, and

http://dev.mysql.com/downloads/


we want to avoid future security problems, it is probably sensible to turn
MySQL server off when we are done with the demonstration. In Windows,
you can use MySQL Workbench to control the server settings on your local
computer.
Returning to R, use install.packages() and library() to prepare the RMySQL
package for use. If everything is working the way it should, you should be
able to run the following command from the command line:

> con <- dbConnect(dbDriver(“MySQL”), dbname = “test”)
The dbConnect() function establishes a linkage or connection between R
and the database we want to use. This underscores the point that we are
connecting to an external resource and we must therefore manage the
connection.
If there were security controls involved (such as username and passwords),
this is where we would provide the necessary information to establish that
we were authorized users of the database. However, in this case, because we
are on a local server of MySQL, we don’t need to provide this security
information.
The dbDriver() function provided as an argument to dbConnect specifies
that we want to use a MySQL client. The database name—specified as
dbname = “test”—is just a placeholder at this point. We can use the
dbListTables() function to see what tables are accessible to us (for our
purposes, a table is just like a dataframe, but it is stored inside the database
system):

> dbListTables(con)
character(0)

The response character(0) means that there is an empty list, so no tables are
available to us. This is not surprising because we just installed MySQL and
have not used it for anything yet. Unless you have another database
available to import into MySQL, we can just use the census data we
obtained earlier in the chapter to create a table in MySQL:

> dbWriteTable(con, “census”, testFrame, overwrite =
+  TRUE)
[1] TRUE

Take note of the arguments supplied to the dbWriteTable() function. The
first argument provides the database connection that we established with the
dbConnect()function. The census argument gives our new table in MySQL



a name. We use testFrame as the source of data—as noted earlier a
dataframe and a relational database table are very similar in structure.
Finally, we provide the argument overwrite=TRUE, which was not really
needed in this case—because we know that there were no existing tables—
but could be important in other operations where we need to make sure to
replace any old table that might have been left around from previous work.
The function returns the logical value TRUE to signal that it was able to
finish the request that we made. This is important in programming new
functions because we can use the signal of success or failure to guide
subsequent steps and provide error or success messages.
Now if we run dbListTables() we should see our new table:

> dbListTables(con)
[1] “census”

Now we can run an SQL query on our table:

Note that the dbGetQuery() call shown above breaks onto two lines, but the
string starting with SELECT has to be typed all on one line. The capitalized
words in that string are the SQL commands. It is beyond the scope of this
chapter to give an SQL tutorial, but, briefly, SELECT chooses a subset of
the table and the fields named after select are the ones that will appear in
the result. The FROM command chooses the table(s) where the data should
come from. The WHERE command specified a condition, in this case that
we only wanted rows where the July 2011 population was less than 1
million. SQL is a powerful and flexible language and this just scratches the
surface.



In this case we did not assign the results of dbGetQuery() to another data
object, so the results were just echoed to the R console. But it would be
easy to assign the results to a dataframe and then use that dataframe for
subsequent calculations or visualizations.
To emphasize a point made above, the normal motivation for accessing data
through MySQL or another database system is that a large database exists
on a remote server. Rather than having our own complete copy of those
data, we can use dbConnect(), dbGetQuery(), and other database functions
to access the remote data through SQL. We can also use SQL to specify
subsets of the data, to preprocess the data with sorts and other operations,
and to create summaries of the data. SQL is also particularly well suited to
joining data from multiple tables to make new combinations. In the present
example, we used only one table, it was a very small table, and we had
created it ourselves in R from an Excel source, so none of these were very
good motivations for storing our data in MySQL, but this was only a
demonstration.
Comparing SQL and R for Accessing a Data Set
In R, there is a library sqldf, that enables us to use a dataframe as a
database. So, for example, we can do the same SQL query using sqldf on a
dataframe that we previously did using SQL on a database. (Note that the
code below assumes that we have already installed and libraried the sqldf
package.):



As you can see, we can do SQL commands using the dataframe as the
database. The actual SQL is the same as normal SQL. Since we can perform
SQL commands on a dataframe, it is very easy to compare typical SQL
tasks with how those tasks can be done in R. That is to say, we can easily
compare using SQL commands to doing more-traditional R commands. For
example, in our code we computed the mean of a column in SQL, and we
also computed the mean (i.e., the same task) directly in R.
We can also use the tapply command to perform a command similar
operation to the Group by SQL command. To show how tapply can be used,
we first need to add the region for each state in the country. This way, we
can states by region. We are lucky, since there is a state.region vector
provided with R this task is very easy. Our only issue is that the census data
set includes Washington, D.C. (the District of Columbia). So we first have
to remove that row before adding the region column.

> testFrame <- testFrame[testFrame$stateName !=
+   “District of Columbia”, ]
> testFrame$region <- state.region

Now we have the region for each state. With this information, we can
determine the average population for each region, based on the states in a



specific region.

In R, as just mentioned, we can do something very similar using the tapply
command, which takes three parameters. This command applies a function
(specified as the third parameter), on a subset of the vector (specified by the
first parameter), broken down by a given factor variable (specified by the
second parameter). Seeing the tapply in action might make this easier to
understand:

In this example, we grouped the april10base column by the region column.
Then, for all the states in a specific region (e.g., the South), tapply took the
mean of those states. This functionality is the same as the Group by SQL
command.
Let’s use these region means to do more with R. Specifically, let’s store the
region mean for each state. This is more complicated than many other tasks
we have done: We have four regions but many states. We need to figure out
which region mean should be associated with each state.
To do this, just like other R commands, we can store the result of the tapply
command and use the results. So we first store the region means in the
regionMean variable and the region names in the regionNames variable.



But how do we create the column with the appropriate region mean for each
state? One strategy is to get the indexes of the states within a specific region
and to assign those states the appropriate region mean. This is similar in
concept to how the order function works to sort a dataframe. As you might
remember, order sorts a column and returns the sorted indexes, which is
then used to sort the dataframe. In our case, we do not need to sort but,
rather, identify which rows have the region. We can use the “which”
function to get this info:

> which(regionNames[1] == testFrame$region)
[1] 7 19 21 29 30 32 38 39 45

We can see the regionNames[1] is the Northeast and use that to let R
determine the appropriate index into regionNames, as shown below:

> which(regionNames[regionNames==”Northeast”] ==
+  testFrame$region)
[1] 7 19 21 29 30 32 38 39 45

ither way, we can get the appropriate rows and can use that information to
define those rows to have the region mean of the Northeast. We can do
similar commands for the other regions.

> testFrame$regionMean <- 0
> testFrame$regionMean[which(regionNames[1] ==
+  testFrame$region)] <- regionMean[1]
> testFrame$regionMean[which(regionNames[2] ==
+  testFrame$region)] <- regionMean[2]
> testFrame$regionMean[which(regionNames[3] ==
+  testFrame$region)] <- regionMean[3]
> testFrame$regionMean[which(regionNames[4] ==
+  testFrame$region)] <- regionMean[4]



As you can see in the code above, we had to repeat the code four times (one
for each region). If you are thinking there must be a way to not have to cut
and paste the code four times, you are correct. In R, there is a concept of
loops. We will use a simple “for” loop to do the same line of code on each
of the regions.

> for (x in 1:4) {
+ indexes <- which(regionNames[x] ==
+   testFrame$region)
+ testFrame$regionMean[indexes] <- regionMean[x]
+ }

In this code, we defined a variable x, and x changes in value each time
through the loop. The first time, x is equal to 1, and the code works for the
Northeast. The second time through the loop, x is equal to 2, and the code
works for the South. When we say the “second time through the loop,” what
happens is that the code between the { and the } is executed four times. The
first time, x is equal to 1; the second time, x is equal to 2. This continues for
x equals 3, and then, finally, x equals 4. As you can probably guess, the 1:4
defines the start and end values for x within the loop.
In many programming languages, loops are fundamental, and are used
extensively. However, in R we can do many, many operations without doing
loops. For people with experience with other programming languages, it is
often tempting to use loops more than needed. For example, in other
programming languages, one might need to use a loop to add two vectors
together, but in R, that is one line of code. This is an example of the power
of R. We can see that using “for” loops adds more code and is not as easy to
read:

> a <- c(10:19)
> b <- c(20:29)
> c <- a + b
> c
[1] 30 32 34 36 38 40 42 44 46 48
> for(x in 1:10) {
+ d[x] <- a[x] + b[x]
+ }
> d
[1] 30 32 34 36 38 40 42 44 46 48



So, while sometimes we need to use loops, always try to think if there is a
way to do the same thing in R without a loop.
Accessing JSON Data
The second strategy we will explore involves the use of an application
programming interface (API) to communicate with another application or
database system. We will explore JSON (Java Script Object Notation), an
increasingly common way to share data on the web. JSON is a structured,
but human readable, way of sending back some data from an application or
a website. Sometimes those data are static, but other times a website will
use JSON to supply up-to-the-minute information. JSON was created by
Douglas Crockford in the early 2000s, while he was working at a start-up
funded by Tesla Ventures. Although originally derived from the JavaScript
scripting language, JSON is a language-independent data format and code
for sharing data. JSON is available for many programming languages,
including R!
We will start by exploring how Google shares geocode information. We will
use the Google geocoding API, which is pretty easy to use, does not require
an account or application ID, and allows about 2,500 address conversions
per day. The Google geocode API allows a user (program or person) to
supply an address, and Google will return the latitude and longitude of that
address. The API can be accessed over the web, using what is called an
HTTP GET request. Note that the terms of service for the Google
geocoding API are very specific about how the interface can be used—most
notably on the point that the geocodes must be used on Google maps. Make
sure you read the terms of service before you create any software
applications that use the geocoding service. See the link in the list of
sources at the end of the chapter. The list has a link to an article with dozens
of other geocoding APIs if you disagree with Google’s terms of service.
These abbreviations probably look familiar. HTTP is the hyper text transfer
protocol, and it is the standard method for requesting and receiving web
page data. A GET request consists of information that is included in the
URL string to specify some details about the information we are hoping to
get back from the request. Here is an example GET request to the Google
geocoding API:



http://maps.googleapis.com/maps/api/geocode/json?
address=1600+Pennsylvania+Avenue,+Washington,+DC&sensor=fals
e

This request can be typed into a web browser as a web address. The first
part of the web address should look familiar: The
http://maps.googleapis.com part of the URL specifies the domain name just
like a regular web page. The next part of the URL, /maps/api/geocode, tells
Google which API we want to use. Then the json indicates that we would
like to receive our result in Java Script Object Notation.
The address appears next, and we are apparently looking for the White
House at 1600 Pennsylvania Avenue in Washington, D.C. Finally,
sensor=false is a required parameter indicating that we are not sending our
request from a mobile phone. As previously mentioned, you can type that
whole URL into the address field of any web browser, and you should get a
sensible result back. The JSON notation is not beautiful, but you will see
that it makes sense and provides the names of individual data items along
with their values. Here’s a small excerpt that shows the key parts of the data
object that we are trying to get our hands on:

Perhaps a bit surprisingly, the actual coordinates you get might be different
from what was shown earlier. That is because Google might be improving
the accuracy of its geocodes. There are tons more data in the JSON object
that Google returned, and we can use RJSONIO to extract the data we need
from the structure without having to parse it ourselves.

http://maps.googleapis.com/maps/api/geocode/json?address=1600+Pennsylvania+Avenue,+Washington,+DC&sensor=false
http://maps.googleapis.com/


In order to get R to send the HTTP GET requests to Google, we will also
need to use the RCurl package. This will give us a single command to send
the request and receive the result back—essentially doing all of the quirky
steps that a web browser takes care of automatically for us. To get started,
use install.packages() and library() on the two packages that we will need—
RCurl and RJSONIO. If you are working on a Windows machine, you
might need to jump through a hoop or two to get RCurl, but it is available
for Windows even if it is not in the standard CRAN repository. Search for
RCurl Windows if you run into trouble.
Next, we will create a new helper function to take the address field and turn
it into the URL that we need:

There are three simple steps here. The first line initializes the beginning part
of the URL into a string called root. Then we use paste() to glue together
the separate parts of the string (note the sep=“” so we don’t get spaces
between the parts). This creates a string that looks almost like the one in the
earlier White House example. The final step converts the string to a legal
URL using a utility function called URLencode() that RCurl provides. Let’s
try it:

> MakeGeoURL(“1600 Pennsylvania Avenue, Washington,
+  DC”)
[1]
“http://maps.google.com/maps/api/geocode/json?
address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC
&sensor=false”

Looks good! Just slightly different from the original example (%20 instead
of the plus [+] character), but hopefully that won’t make a difference.
Remember that you can type this function at the command line or you can

http://maps.google.com/maps/api/geocode/json?address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC&sensor=false


create it in the script editing window in the upper-left-hand pane of
RStudio. The latter is the better way to go; if you click the Source on Save
checkmark, RStudio will make sure to update R’s stored version of your
function every time you save the script file. Now we are ready to use our
new function, MakeGeoURL(), in another function that will actually
request the data from the Google API:

We have defined this function to receive an address string as its only
argument. The first thing it does is to pass the URL string to
MakeGeoURL() to develop the formatted URL. Then the function passes
the URL to getURL(), which actually does the work of sending the request
out onto the Internet. The getURL() function is part of the RCurl package.
This step is just like typing a URL into the address box of your browser.
We capture the result in an object called apiResult. If we were to stop and
look inside this, we would find the JSON structure that appeared earlier. We
can pass this structure to the function fromJSON()—we put the result in an
object called geoStruct. This is a regular R dataframe such that we can
access any individual element using regular $ notation and the array index
[[1]]. Note that our results are two lists (not vectors). One thing to
remember when working with lists is that we need to use double square
brackets: [[ ]]. If you compare the variable names geometry, location, lat,
and lng to the preceding JSON example, you will find that they match



perfectly. The fromJSON() function in the RJSONIO package has done all
the heavy lifting of breaking the JSON structure into its component pieces.
Note that this is the first time we have encountered the try() function. When
programmers expect the possibility of an error, they frequently use methods
that are tolerant of errors or that catch errors before they disrupt the code. If
our call to getURL() returns something unusual that we aren’t expecting,
then the JSON structure might not contain the fields that we want. By
surrounding our command to assign the lat and lng variables with a try()
function, we can avoid stopping the flow of the code if there is an error.
Because we initialized lat and lng to NA, this function will return a two-
item list with both items being NA if an error occurs in accessing the JSON
structure. There are more-elegant ways to accomplish this same goal. For
example, the Google API puts an error code in the JSON structure and we
could choose to interpret that instead. We will leave that to the Chapter
Challenge!
In the last step, our new Addr2latlng() function returns a two item list
containing the latitude and longitude. We can test it out right now:

> testData <- Addr2latlng(“1600 Pennsylvania Avenue,
+  Washington, DC”)
> str(testData)
num [1:2] 38.9 -77

Perfect! we called our new function Addr2latlng() with the address of the
White House and got back a list with two numeric items containing the
latitude and longitude associated with that address. With just a few lines of
R code we have harnessed the power of Google’s extensive geocoding
capability to convert a brief text street address into mapping coordinates.
Now let’s try to read a large JSON data set. Our example that we will parse
is a data set about the Citi Bike program in New York City. There are
similar programs in many cities. The basic idea is that a person can rent a
bike from one bike location and ride it to another location in the city. The
person can leave it there. So, for example, maybe you take a bike to work,
lock it at a location near work, but in the evening, if it’s raining, you can
take the train home. The next day, you can ride a different bike to work. Of
course, if it rained every afternoon for a week, and everyone acted the same
way, eventually, there would be no bikes in some locations (and no empty
spaces in other Citi Bike locations). Hence, Citi Bike makes data available



about how many bikes and spaces are available at each of its locations. One
of the ways Citi Bike makes this information available is via JSON. To
access the data, we will again use the package RJSONIO (there are other
JSON packages available in R, such as jsonlite, but we have found
RJSONIO to be somewhat more stable in parsing JSON data sets). We will
also use the RCurl package, since we will use the getURL function to
retrieve the source of the JSON web page.
To start, after loading the RJSONIO and RCurl libraries, we load the JSON
data set with the following code:

> bikeURL <-
+ “https://feeds.citibikenyc.com/stations/
+ stations.json”
> apiResult <- getURL(bikeURL)
> results <- fromJSON(apiResult)
> length(results)
[1] 2

First, we captured the result in an object called apiResult. Note that, as was
previously mentioned, just as for a CSV file, JSON is human readable. So if
we type the URL into a browser, we can see the results on a web page, just
as we did for the Google geocode API. If we were to stop and look inside
the apiResult, we would find the JSON structure. We then pass this
structure to the function fromJSON()—and put the result in an object called
results. This is a regular R dataframe such that we can access any individual
element using regular $ notation and the list index using double brackets
since our results are two lists (not vectors). The first item in the list
describes when the web page (data set) was generated, as we can see from
the following code:

> when <- results[[1]]
> when
[1] “2016-01-03 11:56:40 AM”

The next results are actually a list of stations:
> stations <- results[[2]]
> length(stations)
[1] 508

While lists are more of a hassle than dataframes, we are starting to see some
real data—specifically, that there are 508 places where someone can get or

https://feeds.citibikenyc.com/stations/


return a bike. Now let’s look at one station to see the type of information
available for each station:

Now we finally have interesting data! We can see that there are 39 docks
(the places to park a bike) at this station and that there are 5 docks
available, meaning that there are 34 bikes available, which you can see is
another data element later in the list. There are other interesting pieces of
information, such as the street addresses. But working with lists is a pain, so
let’s convert this station list into a dataframe using the following R code.
We first get the total number of rows in the list of stations (which is the
number of stations to get/park a bike) and the names of all the attributes at
each station (which will be our column variables in our dataframe).

> numRows <- length(stations)
> nameList <- names(stations[[1]])

Next we create the dataframe, by using unlist on the list, which creates one
long list of elements, and putting them back into a dataframe, using the



structure of the matrix.
> dfStations <- data.frame(matrix(unlist(stations),
+ nrow=numRows, byrow=T), stringsAsFactors=FALSE)

Finally, we need to name the columns appropriately:
> names(dfStations) <- nameList

Now we can look at our newly created dataframe:



The only thing left to clean up is the fact that R thinks all the columns
(variables) are characters, but some are numbers, so we can fix this by
doing the following:

We are done reading in a JSON data set! However, just for fun, before we
move on let’s take a look at some of the data. Of course, if we rerun the
code, we might get different results since these data update throughout the
day, every day.

We can see that there is an average of more than 21 docks available at each
station, and there is an average of 10 bikes available at each station.
However, there are only 469 stations with at least one bike available (and
remember, there is a total of 508 stations).
While we covered a lot in the chapter, the key point is that there are many
ways to store and access data. Our job, as data scientists, is to be able to
read the data and put it into a usable format within R.

Chapter Challenge
Explore the web for other JSON data sets. Find one that is
interesting and read the JSON data set into R. Work with the
JSON data set to make sure it can be easily used by creating a
dataframe with the key information that was read using JSON.



Sources
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/web/packages/gdata/gdata.pdf
http://www.json.org
http://dev.mysql.com/downloads/
http://en.wikipedia.org/wiki/Comparison_of_relational_database
_management_systems
http://gis.stackexchange.com/questions/110942/how-often-does-
google-change-the-geo-coordinates-for-a-given-address

R Functions Used in This Chapter
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http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
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12 Pictures Versus Numbers

© iStockphoto.com/larryrains

Learning Objectives
Explain what visualization is and how it compares with
statistical analysis.
Describe the key characteristics in an effective visualization.
Effectively use ggplot2, including understanding the three key
components (data, aesthetics, geometry).
Construct histograms, boxplots, line charts, bar charts, scatter
charts, and heatmaps in R, using ggplot2.



Demonstrate how to use the following R functions: ggplot (and
building layers in ggplot via ggtitle, geom_histogram,
geom_boxlot, geom_line, geom_col, geom_point, geom_text,
coord_flip, theme, format, scale_color_continuous).

Sometimes it is really helpful to “see” the data. Seeing the data is typically
known as visualization. We can think of visualization as turning data into
pictures. More formally, in the book Interactive Data Visualization (2015,
Boca Raton, FL: CRC Press), Matthew Ward, Georges Grinstein, and
Daniel Keim define visualization as the “the communication of information
using graphical representations.” Information visualization is the use of
visual representations of abstract data. In other words, information
visualization is used when there is no well-defined two-dimensional or
three-dimensional representation of the data. In this chapter we will explore
information visualization. In the following chapter, we will explore data
that have a geometric component, just as our Citi Bike data had a geometric
component of stations (that had a physical address).
Visualization is often useful since human vision has the highest bandwidth
of all our senses. It is fast and processes information in parallel. In addition,
the eye is trained for pattern recognition—we can scan an image, quickly
recognize outliers, and remember that image. For example, quickly
reviewing a grid of numbers (perhaps an Excel spreadsheet) and finding the
large and small numbers can be difficult. However, if the grid cells are color
coded, it is much easier to identify the largest and smallest numbers.
A Visualization Overview
There are six key components one can use to create a visualization. We can
think of a simple scatter plot when exploring each of these components.
Color: The color of each symbol in the scatter plot. Color is the most
common and was mentioned in our grid of numbers example. Note that
some people are color-blind, so the use of color needs to take this into
account.
Size: The size of each symbol in the scatter plot.
Texture: The shape of the symbol and whether the symbol is a solid color
or a pattern.
Proximity: The location of the symbol on the X-axis and the Y-axis.
Annotation: Whether we label our scatter plots.



Interactivity: Selecting one or more symbols, or perhaps zooming into a
subset of the graph.
Before we start exploring how to create visualizations, one last point to
remember is that often, in a visualization, we must focus on making sure
that the picture is easy to understand. It is often very easy to create a
visualization that has a lot of information, but is difficult to understand. To
address this concern, the following are 10 principles that should be useful to
think about as you create a visualization:

1. Simplicity. Edward Tufte is famous for suggesting that you should
create the simplest graph that conveys the information you want to
convey. This is a good rule to remember!

2. Encoding. Consider the type of encoding used, and try to make the
encoding intuitive. For example, something that is bigger should be
encoded as something longer/thicker/bigger as compared to something
that is smaller.

3. Patterns versus details. Focus on visualizing patterns or the details. It is
very hard to do both in the same picture.

4. Ranges. Select meaningful ranges for the axes.
5. Transformations. Transforming data can be useful. An example is a log

transformation.
6. Density. Rendering semitransparent points can show the density in

different parts of the visualization.
7. Connections. Use lines to connect sequential data.
8. Aggregates. Combine data and visualizations in meaningful ways.
9. Comparison. Keep axis ranges as similar as possible when comparing

multiple graphs.
10. Color. Select an appropriate color scheme, based on the type and

meaning of the data.
Now we are set to begin creating visualizations! In fact, we have used some
of the R base graphics during our initial exploration of data sets. For
example, when we wanted to understand the distribution of a vector (such
as population of states within the United States), we can compute the mean,
range, quantiles, and other attributes such as skewness, but often it is much
easier to understand information presented in a picture. In this case, to
understand the distribution of a vector (or a column in a data set), we used a
histogram. This visualization provided a view of the data that



complemented our descriptive statistics that we generated in previous
chapters.
Basic Plots in R
So, let’s continue to explore the states population data set.

> dfStates <- readCensus()
We can start by reviewing the R base graphics that we have previously
used. For example, if we want to understand the distribution of the state
populations, we can show the histogram in Figure 12.1.

> hist(dfStates$july11pop)
Figure 12.1

Using R base graphics, we can also show a bar plot (a bar chart), as in
Figure 12.2.

> barplot(dfStates$july11pop, names.arg =
+  dfStates$stateName, las=2)

Figure 12.2



Using ggplot2
While doing these simple charts in R’s base graphics is very easy, if we
want to create more-advanced visualizations, we need to explore a more-
advanced visualization package, known as ggplot2. As we will see, doing
simple things in ggplot2 is more complicated, but that extra work makes it
much easier to build advanced and more useful visualizations.
According to ggplot2’s own website (http://ggplot2.org/), “ggplot2 is a
plotting system for R, based on the grammar of graphics, which tries to take
the good parts of base and lattice graphics and none of the bad parts. It
takes care of many of the fiddly details that make plotting a hassle (like
drawing legends) as well as providing a powerful model of graphics that
makes it easy to produce complex multi-layered graphics.” Yup! The gg
stands for grammar of graphics. ggplot2 was initially created by Hadley
Wickham in 2005 and was refined until 2015. The latest version, ggplot2, is
now the most commonly used visualization tool within the R ecosystem. An
important concept when using ggplot2 is that we can build up layers of
information to be displayed. So, for example, we can have one layer for
lines and another layer for points.
To create a ggplot, we need to define three key items. First, we need to
define the data, in the form of a dataframe, to be used in the visualization.

http://ggplot2.org/


Next, we need to describe the aesthetics for the visualization. The aesthetics
defines how to map attributes, such as color, to columns in the dataframe.
The aesthetics also defines which columns get mapped to the X- and Y-axis
of the visualization The final component of a ggplot visualization is the
geometry, which defines the type of graphics to be used in the visualization
(such as a histogram, a scatter plot, or a bar chart). Don’t worry if this
sounds confusing, as we go through the examples in the chapter, it will
become easier to understand!
Before we get started using ggplot, we need to ensure that ggplot2 has been
installed and libraried. Rather than do this manually, let’s create a function
that will assist us and make the activity more repeatable. So here is a
function that takes as input the name of a package. It tests whether the
package has been downloaded—installed—from the R code repository. If it
has not yet been downloaded/installed, the function takes care of this. Then
we use a new function, called require() to prepare the package for further
use. Let’s call our function EnsurePackage, because it ensures that a
package is ready for us to use. It might make sense to create this function in
a new R source file. If so, you should click the File menu and then click
New to create a new file of R script. Then, type or copy/paste the following
code:

On Windows machines, the folder where new R packages are stored has to
be configured to allow R to put new files there (“write” permissions). In
Windows Explorer, you can right click on the folder and choose Properties-
>Security, then choose your username and user group, click Edit, enable all
permissions, and click OK. If you run into trouble, check out the Windows



FAQ at CRAN by searching or using this web address: http://cran.r-
project.org/bin/windows/base/rw-FAQ.html.
The require() function does the same thing as library(), which we have used
in the previous chapter, but it also returns the value FALSE if the package
you requested in the argument x has not yet been downloaded. That same
line of code also contains another new feature, the “if” statement. This is
what computer scientists call a conditional. It tests the stuff inside the
parentheses to see if it evaluates to TRUE or FALSE. If TRUE, the program
continues to run the script in between the curly braces (lines 4 and 8). If
FALSE, all the stuff in the curly braces is skipped. Also, in the third line, in
case you are curious, the arguments to the require() function include x,
which is the name of the package that was passed into the function, and
character.only=TRUE, which tells the require() function to expect x to be a
character string. The last thing to notice about this third line: there is an
exclamation mark (!) character that reverses the results of the logical test.
Technically, it is the Boolean function NOT. It requires some mental
gyration that when require() returns FALSE, the ! inverts it to TRUE, and
that is when the code in the curly braces runs.
Once you have this code in a script window, make sure to select the whole
function and click Run in the toolbar to make R aware of the function.
There is also a checkbox on that same toolbar called Source on Save that
will keep us from having to click on the Run button all the time. If you click
the checkmark, then every time you save the source code file, RStudio will
rerun the code. If you get in the habit of saving after every code change you
will always be running the latest version of your function.
Now we are ready to put EnsurePackage() to work

> EnsurePackage(“ggplot2”)
Now that we can use ggplot2, let’s explore one key aspect of ggplot—the
fact that we can build up the plot with layers. The code below shows a
histogram being built.

http://cran.r-project.org/bin/windows/base/rw-FAQ.html


Figure 12.3

To review the code, the first line creates a ggplot, where the dataframe to be
used is dfStates, and the X-axis will be the july11pop population. Note that
once we specify the dataframe (dfStates), ggplot looks at the columns
within the data set (such as july11pop). The next line states that we want to
use a histogram with the bars being white with a black outline (see Figure
12.3); finally, we add a title. Another way to see the distribution within a
list of numbers is to create a boxplot as shown in Figures 12.4 and 12.5.

> ggplot(dfStates,aes(x=factor(0),july11pop)) +
+ geom_boxplot()

If we want to explore the distribution of the population but put the states
into two groups—one group for those states with an increase in population
and one group for states with a decrease in population—we can use the
following code:
Figure 12.4



Figure 12.5



Figure 12.6

The first line creates a new column in the dfStates dataframe, based on the
change in population. The second line of the code creates a new column in
the dataframe, noting if the population change was positive or negative.
Then we create the boxplot. Note the coord_flip() function, which rotates
the chart by 90 degrees.
In addition to histograms and boxplots, we can also use ggplot2 to create
line and bar charts. To create a line chart, like that shown in Figure 12.7, we
use the geom_line() function; to create a bar chart, like that shown in Figure



12.8, we use the geom_col() function. You can see in the code below that
we rotate the x labels (the state names) so that we can easily read the state
name. Finally, note that the height of the bar (or line) represents the value in
a column of our dataframe (the July 2011 population).

Figure 12.7



Figure 12.8

More Advanced GGPLOT2 Visualizations
We can refine the bar chart by having the color of the bars represent another
variable. So let’s create a visualization where the bar color represents the
percent change in population, as in Figure 12.9.



Figure 12.9

Our last type of visualization we will explore is a scatter plot, which
provides a way to look at the data across two dimensions. So let’s create a
scatter plot where each point represents a state. We can place the point on
the two-dimensional grid based on the population change (the X-axis) and
the percent change (the Y-axis). In addition, we color the points based on
the July 2011 population. We use that population for the size of the point as
well, as shown in Figure 12.10.



Figure 12.10

Finally, we add some text to show the name of each state (see Figure
12.11):

> g + geom_text(aes(label=stateName), size=4)
Figure 12.11



By using this scatter plot, we see some states are outliers (some have large
populations, and some have much smaller populations). For example, the
District of Columbia has a very small population (and population change)
but has the largest percent increase in population. Texas is a large state and
has a high percentage change in population.
We can improve the picture (see Figure 12.12) by moving the text (the state
name) to be away from the actual symbol by using the hjust and vjust
parameters (adjusting the horizontal and vertical position of the text)

> g + geom_text(aes(label=stateName),size=4, hjust=1,
+ vjust=-1)

Figure 12.12



But this is still a cluttered scatter chart. Let’s clean it up by doing several
actions. First, let’s define a set of key (or important) states. These are the
states that have a percentage change of at least 1% and a population change
of at least 100,000 people. With these criteria, we can define a new column
in the dfStates dataframe, keystate, to be true if that state fits our defined
criteria of percentage and population change. In the scatter chart, we show
the key states by defining the shape of the symbol within the scatter plot to
dependent on the keystate column. We also show the text of the state name
only for the key states. Next, we clean up the format of the color key,
defining the three values to be shown in the key as well as formatting the
numbers to include commas, so the numbers are easier to see. Finally, we
change the color scale to range from white to black.



Figure 12.13



In the visualization in Figure 12.13 it is easy to see the three states of most
interest—Georgia, Florida, and Texas.
Wow, we just covered many different ways to create visualizations using
ggplot2. In the next chapter we will continue with visualizations but will
focus on visualizing data that can be shown on a map.

Chapter Challenge
Create a bar chart, showing the average population in each
region of the United States. To do this, you will need to add the
region to each state (as was done in the previous chapter, where
we added the region to our dataframe and then used tapply). You
will need to do something similar here, adding the region to the
dfStates dataframe and then figuring out how to calculate and
display the mean for each region.

Sources
https://www.rstudio.com/wp-content/uploads/2015/04/ggplot2-
cheatsheet.pdf

https://www.rstudio.com/wp-content/uploads/2015/04/ggplot2-cheatsheet.pdf


http://ggplot2.org
http://www.sthda.com/english/wiki/print.php?id=121
http://www.crcpress.com/Interactive-Data-Visualization-
Foundations-Techniques-and-Applications/Ward-Grinstein-
Keim/p/book/9781482257373
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13 Map Mashup
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Learning Objectives
Demonstrate the integration of disparate data sources to aide in
decision making.
Utilize ggplot for geographic map representation.
Plot geographic and numerical data within one visualization.
Demonstrate how to use the following R functions: paste,
as.character, geocode, gsub, ggplot (and building layers in
ggplot via geom_map, geom_point, expand_limits, coord_map).

In this chapter we continue our exploration of visually displaying
information, and tackle a mashup challenge. Mashup is a term that
originated in the music business decades ago related to the practice of
overlaying one music recording on top of another one. The term has entered
general usage to mean anything that brings together disparate influences or
elements. In the application development area, mashup often refers to
bringing together various sources of data to create a new product with



unique value. There’s even a nonprofit consortium called the Open Mashup
Alliance that develops standards and methods for creating new mashups.
One of the first examples of a maps mashup was HousingMaps
(http://www.housingmaps.com), a web application that grabbed apartment
rental listings from the classified advertising service Craigslist and plotted
them on an interactive map that shows the location of each listing. This app
helped to popularize the idea that it might be useful to show real estate
availability on a map. Although it’s hard to imagine now, previously, real
estate showed properties via lists and images, and then people would have
to manually look up the location on a different map!
This housing example shows the power of using maps to display
information, and, as data scientists, we need to not only be able to calculate
and analyze data, but we also need to be able to display the information in
an intuitive manner. Showing a dot where each house is located is far more
intuitive than just showing a list of houses available within a city. One
could also encode more meaning in the map in that, rather than just a dot
for each rental available, we could color-code the symbol and have different
types of symbols. So, for example, we could have apartments be one shape
and single-family houses be another shape. We could color-code based on
price. As you can see, map visualizations are similar in concept to the
visualizations we previously discussed, but with the added physical
component of the actual map. Since we just mentioned color coding, this
might be a good time to explain how we can use color coding and still take
into account that many people are color-blind. One approach is to use a gray
scale, which we did at the end of the previous chapter, such as ranging from
white to black. Another approach is to pick a color range that varies
intensity from light to dark (such as ranging from white to blue).
Creating Map Visualizations with ggplot2
Let’s start with generating a simple map, using, of course, ggplot2. We do
this in a similar fashion to other ggplot charts. However, first we need to get
a map. Luckily, there is a package that works with ggplot2, known as
ggmap. Once that is installed, we can get the map of the United States with
the following line of code:

> us <- map_data(“state”)

http://www.housingmaps.com/


ggmap also has the list of state names available as a variable (state.names),
so we can use this to create a default (dummy) dataframe (since all we want
to do now is to show a basic map, without any data). Note that ggplot wants
all the state names to be lower case, which is why we used the tolower()
command.

> dummyDF <- data.frame(state.name,
+ stringsAsFactors=FALSE)
> dummyDF$state <- tolower(dummyDF$state.name)

Now that we have a map and a dataframe, we can create a ggplot,
specifying a dataframe and the map we want to use. Then we use the
geom_map function (similar in spirit to the geom_col or geom_line
functions we previously used).
Within the geom_map, we tell ggplot the map to use and tell it to simply fill
each state white and have its outline be black. We then expand the limits,
based on the longitude and latitude for the United States. Finally, the
coord_map function makes sure to keep the map from being distorted or
stretched.

After doing these commands, we get a real map: see Figure 13.1.
While that’s a good start, it becomes much more interesting if we can shade
each state, based on some attribute, such as the population of the state. In
order to do this mashup, we can to use our function to read the state
population data set, and then make sure the state names are all lowercase.
As previously mentioned, we need to do this because ggplot expects the
state names to be lowercase.



Figure 13.1

Now we can easily create a map, and have the fill color represent the
population of each state by telling ggplot to fill each state based on the
july11pop column of data (see Figure 13.2). Everything else is the same as
the simple map we previously created.

In looking at Figure 13.2, we can see the states with the highest population
are California, Texas, and New York. So now we have created two maps—
one that is a simple map without any info (map.simple) and one that has the
population shown as the color within each state (map.color). These two R
objects are stored and ready to use.



Figure 13.2

Showing Points on a Map
Let’s now add points to the map. Let’s start by just hard coding the latitude
and longitude of a specific location. For example, let’s demonstrate this
with a made-up point somewhere in Texas:

> map.simple + geom_point(aes(x = -100, y = 30))
Look carefully in Figure 13.3 for the dot in southern Texas. We used
geom_point to create that single point, specified by x (longitude) and y
(latitude) within the geom_point function.
Next, let’s show a point on the map, using a logical location. A logical
location is the address of a location, as opposed to specific latitude and
longitude coordinates. Let’s find where Syracuse, New York, is located on
the map. To do this, we need to use the function geocode from the ggmap
package, as you can see with the following code:

> latlon <- geocode(“syracuse, ny”)
Source :

Figure 13.3



We can see the geocode function returns an x (longitude) and y (latitude)
for the address provided. You can also see that the geocode function uses
the Google web service to obtain the latitude and longitude, and that the
Google service encodes the results using JSON (the web data format we
previously explored). In fact, we could have used the function we created,
Addr2latlng, as opposed the ggmap’s geocode function. Since they both use
the Google API, they both would have returned the same information.
Note that if we use the geocode function or our Addr2latlng function, the
Google geocoding application programming interface (API) is pretty easy
to use, does not require an account or application ID, and allows about
2,500 address conversions per day. As a reminder, the terms of service for
the Google geocoding API are very specific about how the interface can be
used—most notably on the point that the geocodes must be used on Google
maps. Make sure you read the terms of service before you create any
software applications that use the geocoding service. See the link in the
bibliography at the end of the chapter. The bibliography has a link to an
article with dozens of other geocoding APIs if you disagree with Google’s
terms of service.



We can use that x and y location to draw a point on the map at the logical
location of the address.

> map.popColor + geom_point(aes(x = latlon$lon, y =
+ latlon$lat), color=“darkred”, size = 3)

If you look at the map in Figure 13.4, you can see a darker, slightly larger
dot in the state of New York.
Figure 13.4

Note: Arrows have been added to indicate dots.
Adding a second point requires just a little more work:



As you can see, R gave an error, because it wanted our simple dataframe
(df.latlon) to have a column state. So, although we are not using the state
info, we can certainly supply a dummy column:

Figure 13.5 has a map with three circles, one in New York and two in
Colorado. You might be asking why the geocode function didn’t give an
error, since we just specified Colorado for one of the locations. Geocode
(or, more specifically, Google) will do its best to figure out what you meant.
In this case, it looks like Google gave us the location close to Denver
(which is Colorado’s state capital) but not exactly Denver.
A Map Visualization Example
Now, let’s use our new knowledge to do a more advanced mashup. First, we
need a source of data (points, locations) to add to our map. This could be
anything that we’re interested in: the locations of restaurants, crime scenes,
colleges, and so on. In Google a search for filetype:xls or filetype:csv with
appropriate additional search terms can provide interesting data sources.
You might also have mailing lists of customers or clients. The most
important thing is that we will need an address in order to geocode the
addresses. For this example, we found a list of companies trying to leverage
open data. You can look at the website (http://www.opendata500.com/) to
get more info, but in brief, the website states, “The OD500 Global Network
is an international network of organizations that seek to study the use and
impact of open data.” Since we are data scientists, this sounds like a good
list to explore.
Figure 13.5

http://www.opendata500.com/


Note: Arrow has been added to indicate dot.
When we explore a new data set, it is often helpful to identify some
interesting questions that one might try to answer when exploring the data
set. In this situation, we can ask several questions, such as

Where are the companies located?
Are the companies bunched in one or two parts of the country (or
spread out throughout the country)?
Are most of the companies large or small? Does the size of the
company vary by geography?

While we could ask other questions, let’s focus on these questions. First, we
need to read in the file, which is located at
http://www.opendata500.com/us/download/us_companies.csv:

Let’s look at the dataframe we just read into od.companies:

http://www.opendata500.com/us/download/us_companies.csv


Wow—that’s a lot of columns of data. However, for now we can focus on
city and state. We first make sure the city was not left blank:

> od.companies <-
+ od.companies[od.companies$city != “”,]

Next we need to clean up the state abbreviations. In order to do this, we first
remove Washington, D.C. Why do that? Because it’s not a state, so ggplot2
will not know what to do with that info. Then we also need to change KA to
KS (the postal service abbreviation for Kansas is KS, but sometimes it is
known as KA.



Now we are ready to get our geocodes. We first create a new column that
combines the city and state, and then pass that info to the geocode function.
Since we have many geocodes, this might take several minutes—mainly
due to the fact that Google throttles people using their web service.

OK. Glad we only had to create the geocodes once, but now that we have
them, we can show these locations on our maps!

> map.simple + geom_point(data=od.companies,
+ aes(x = geoCode$lon, y = geoCode$lat), shape=1)

Figure 13.6

Oh no. What happened? If you look at Figure 13.6, you can see a point on
the right—with a bad longitude location, that messes up the map (making
the U.S. map much smaller). Which company is causing the issue? One way
to find the company is to look at the company with a longitude greater than
zero (0). We can see, with the following R code, that the company has a
location of Vilnius, AL. However, there is no known city of Vilnius in
Alabama. Instead, Google seems to have returned a city in Lithuania!

> bad <- od.companies[od.companies$geoCode$lon > 0, ]



> bad$cityState
[1] “Vilnius AL”

Since the city seems wrong, we can remove that company from our list, and
then try to plot the points again.

Now Figure 13.7 shows a better map, but it is still not that informative.
To make the map more useful, we can have the color of the mark (circle)
represent the size of the company, in terms of the number of employees.
Note that the size of the company is a factor (i.e., not an actual number), but
we need to tell R the order of the full_time_employees so that the smaller
number of employees are mapped to lighter circles. In order to show the
colors, it will also be useful to use the RColorBrewer package (to get a
good range of colors).
Figure 13.7



You will see that the code created a variable called myColors that has a
specific shade of color for each level of company size. The darkest circle in
Figure 13.8 (most red if you run the code) represents the largest company.
Note that as we start to use colors to represent data, we need to keep in
mind that there are many people who are color-blind—going from light to
dark will work for people that are color-blind. For our final map, we will go
back to the map that had the populations for each state represented as the
fill color of each state, and then overlay all our points on that map (note that
the figure on your screen will look better than Figure 13.8, which is in black
and white):

Figure 13.8



In the key, you can see that there is an NA as one of the sizes. This is
because some of the data entries in the column full_time_employees were
not known (and hence NA). R generated a warning when generating the
image, because ggplot didn’t know how to plot a size of NA. If we wanted
to remove these rows, we could have used the na.omit() function.
This completes our focus on visualizations, until much later, when we
explore interactive applications via the use of Shiny Apps. Next, we turn to
text mining, which focuses on exploring unstructured data sets.

Chapter Challenge(s)
Find a census data set with additional information
(https://www2.census.gov/programs-
surveys/popest/datasets/2010-2016/national/totals/nst-est2016-
alldata.csv). Parse the data set and then display the data in a
useful manner, using the different visualization techniques we
have covered in these last two chapters.

Sources
http://www.opendata500.com/
http://blog.programmableweb.com/2012/06/21/7-free-
geocoding-apis-google-bing-yahoo-and-mapquest/
https://developers.google.com/maps/terms
http://en.wikipedia.org/wiki/Open_Mashup_Alliance

https://www2.census.gov/programs-surveys/popest/datasets/2010-2016/national/totals/nst-est2016-alldata.csv
http://www.opendata500.com/
http://blog.programmableweb.com/2012/06/21/7-free-geocoding-apis-google-bing-yahoo-and-mapquest/
https://developers.google.com/maps/terms
http://en.wikipedia.org/wiki/Open_Mashup_Alliance


http://www.housingmaps.com/
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Learning Objectives
Access and analyze unstructured data.
Explain the purpose of word clouds.
Apply the text mining and word cloud package to do basic text
mining.
Gain experience using the following R functions: readlines,
scan, htmlTreeParse, xpathApply, VectorSource, corpus,
tm_map, TermDocumentMatrix, sumRows.

Prior chapters focused on analysis of structured data and built on earlier
knowledge of samples and distributions. Even our visualizations focused on
understanding the analysis of structured data. This chapter switches gears to
focus on manipulating so-called unstructured data, which in most cases
means natural language texts. These unstructured data are everywhere and
include speeches and web pages. Additional sources of text include Twitter
(which companies can mine to understand positive and negative tweets
about their products), product reviews (such as Yelp and TripAdvisor), and
free-form answers to surveys.



So, let’s start our exploration of words. The picture at the start of this
chapter is an example of a text mining visualization. The visualization is a
word cloud that was generated by R, using a famous speech as input. These
colorful word clouds are fun to look at, but they also do contain some useful
information. The geometric arrangement of words on the figure is partly
random and partly designed and organized, and colored, to please the eye.
The font size of each word, however, conveys some measure of its
importance in the corpus of words that was presented to the word cloud
graphics program. The word corpus, from the Latin word for “body,” is a
word that text analysts use to refer to a body of text material, often
consisting of one or more documents. When thinking about a corpus of
textual data, a set of documents could really be anything: web pages, word
processing documents on your computer, a set of tweets, or government
reports. In most cases, text analysts think of a collection of documents, each
of which contains some natural language text, as a corpus if they plan to
analyze all the documents together.
Similar to many other visualizations, word clouds are sometimes useful and
sometimes not so useful. For example, when trying to get a quick
understanding from free-form survey responses (such as “please let us
know if you have any additional thoughts about using our product”), a word
cloud can give a high-level view of how people are responding, or when
someone is trying to get a quick view of a speech, a word cloud might be
useful to show the frequently occurring words.
In this chapter, we will use some new R packages to enable us to investigate
a speech and to create a word cloud like the one shown at the start of this
chapter. Before beginning our work with the two new R packages, we need
to read in a text source. In our case, let’s explore a famous speech by Susan
B. Anthony. Sadly, in the 1800s women in the United States had few legal
rights and did not have the right to vote. Susan B. Anthony gave this speech
after her arrest for casting a vote in the presidential election of 1872, an act
that was unlawful at the time. She was tried and fined $100 but refused to
pay. You can see the speech at
http://www.historyplace.com/speeches/anthony.htm. You can save the
actual speech into a text file by saving a simple text file, which can be done
within a Microsoft Word document, using the save as command, and
selecting txt. In addition, on a Mac, you could also do this using the Text

http://www.historyplace.com/speeches/anthony.htm


Edit tool, or on a PC, by using the wordpad tool. Once we have the file, we
need to read it into R.
Reading in Text Files
To begin working on our word cloud, launch your copy of RStudio. The
first order of business is to create a new RStudio project. A project in
RStudio helps to keep all of the different pieces and parts of an activity
together, including the data sets and variables that you establish as well as
the functions that you write. For professional uses of R and RStudio, it is
important to have one project for each major activity: This keeps different
data sets and variable names from interfering with each other. So let’s
practice creating and using projects! Click on the Project menu in RStudio
and then click on New Project. You will usually have a choice of three
kinds of new projects: a brand-new, or clean, project; an existing directory
of files that will get turned into a project folder; or a project that comes out
of a version control system. Choose New Directory to start a brand-new
project. You can call your project whatever you want, but because this
project uses the word cloud package, you might want to just call the project
wcloud. You also have a choice in the dialog box about where on your
computer RStudio will create the new directory.
RStudio will respond by showing a clean console screen and, most
important, an R workspace that does not contain any of the old variables
and data that we created in previous chapters.
Now we can get started with our new project. The first task we need to do is
to be able to read in a text file. As you are starting to see, there are several
different ways to read data into R. Until now, we have used read.csv and
read.xls (e.g., to read the census data set). These functions are useful for
reading in structured data. Other functions, such as read.table and
read.delim, are also useful for reading in structured data. But if we want to
read in unstructured (text-based) data, scan and readLines are more
appropriate. Since there are so many ways to read in data into R, let’s
review the different alternatives of reading data into R.
For reading in structured data, we can use read.table, read.delim, read.csv,
or read.xls. These functions all allow us to read data into R and create
dataframes. Note that these functions allow that the different columns can
be different types, known in R as the mode of the column (such as a



number, a factor or a string). Remember that all the rows in the column
must be the same mode. How are these functions different? Well, read.table
is the most basic of these functions, and the others are somewhat more
specialized. For example, read.csv is basically a read.table command that
defines that the separator is a comma, and assumes that the first line of the
file is the header (i.e., that it contains the variable names for the dataframe).
The function read.delim is similar to read.csv, but uses a tab as a separator
(sep=‘\t’), as compared to read.csv’s comma. The first, and only required,
argument to these functions is a filename or URL. Some other potentially
useful arguments include the following:
stringsAsFactors: Setting this argument to FALSE prevents R from
converting character data into factors.
na.string: This argument is useful if missing values in your file are
represented by something other than NA or NaN, or if you want to make
sure that strings like NA or NaN are not treated as missing values
skip: This argument allows you to specify the number of lines in your file
that should be ignored before reading the data.
Not surprisingly, read.xls is a specialized function that reads a file that is in
the Microsoft Excel file format. The read.xls function has slightly different
parameters, but the basics are the same in that the function will create a
dataframe by reading the specified file.
Scan is a function for reading in vectors of data, where all the elements
have the same mode, such as all numbers or all characters. Each element
(word or number) needs to be separated from the others by one or more
blanks or other defined character that acts as a separator (such as a comma).
When using scan, the sep= argument can be used to specify a different
separator. While we haven’t used scan yet, we will use it in the next section
on sentiment analysis. We can also try to use scan to read the speech, and as
you can see below, the syntax is easy to understand. The character(0)
parameter tells scan that, in this case, we are reading characters and not
integers. The separator character is \n, since, in this situation, we want to
read a line of characters at a time. Note that the sba.txt file was downloaded
from the web and is a simple text file stored locally on the computer.

> sbaFile <- “sba.txt”
> sba <- scan(sbaFile, character(0),sep = “\n”)
Read 8 items



> head(sba, 3)
> words[1]
[1] “Friends and fellow citizens: I stand before you tonight under
indictment for the alleged crime of having voted at the last presidential
election, without having a lawful right to vote. It shall be my work this
evening to prove to you that in thus voting, I not only committed no
crime, but, instead, simply exercised my citizen’s rights, guaranteed to
me and all United States citizens by the National Constitution, beyond
the power of any state to deny.”
> words[2]
[1] “The preamble of the Federal Constitution says:”
> words[3]
[1] “\”We, the people of the United States, in order to form a more
perfect union, establish justice, insure domestic tranquillity, provide
for the common defense, promote the general welfare, and secure the
blessings of liberty to ourselves and our posterity, do ordain and
establish this Constitution for the United States of America.\“”

We also could have used the default separator (a space), which would have
also worked. In this situation, our vector (sba) would have had many more
elements (in fact 487 elements), and each element would have had just one
word.
The third way to read a file is by using readLines. The readLines function
provides a simple but flexible approach to obtaining text data from a source.
One of the interesting aspects of readLine is the control parameter con
(which means connection). The con parameter defaults to con=stdin()”
where stdin() is the command line input to R. So readLines can be used to
grab one or more lines of text typed by the R user. More commonly, we
supply the readLines function with a filename as its first argument, and it
returns a vector with as many elements as there are lines of text in that file.
Unlike scan or read.table, readLines grabs each line and stores it as a
character string in a vector of character strings. In the following code, the
function readLines creates a character vector with as many elements as lines
of text, with a line being defined as any string of text that ends with a
newline character (\n). As you can see, the output is somewhat cleaner than
the results from using the scan function, but both would work in this
situation.



> sbaFile <- “sba.txt”
> sba <- readLines(sbaFile)
> head(sba, 3)
[1] “Friends and fellow citizens: I stand before you
tonight under indictment for the alleged crime of
having voted at the last presidential election,
without having a lawful right to vote. It shall be my
work this evening to prove to you that in thus voting,
I not only committed no crime, but, instead, simply
exercised my citizen’s rights, guaranteed to me and
all United States citizens by the National
Constitution, beyond the power of any state to deny.”
[2] “”
[3] “The preamble of the Federal Constitution says:”

Finally, as shown next, we can read a web page directly. This means that we
have to parse the HTML and convert that HTML into simple text. To do
this, we can use the htmlTreeParse function to read a web page (page of
HTML). We then parse the HTML document to look for paragraphs. HTML
denotes paragraphs by using <p>, so we look for the p HTML tag, starting
at the root of the document. Finally, we unlist the results to create a vector
of character strings.



Once we read in the speech (above, we stored the results into the variable
sba, for Susan B. Anthony), we can see it is just a vector. However, each
element in the vector can contain lots of words, since, as we can see in the
output for sba, a given vector might contain several sentences.
Using the Text Mining Package
Now that we have the text of the speech, we need to be able to process it to
get it ready for the word cloud procedure. We can use the tm package to
process our texts. The tm in this case refers to text mining and is a popular
choice among the many text analysis packages available in R. By the way,
text mining refers to the practice of extracting useful analytic information
from corpora of text (the word corpora is the plural of corpus). Although
some people use the terms “text mining” and “natural language processing”
interchangeably, there are some couple subtle differences worth
considering. First, the mining part of text mining refers to an area of
practice that looks for patterns in large data sets, or what some people refer
to as knowledge discovery in databases. In contrast, natural language
processing reflects a more general interest in understanding how machines



can be programmed (or can learn on their own) how to digest and make
sense of human language. In a similar vein, text mining often focuses on
statistical approaches to analyzing text data, using strategies such as
counting word frequencies in a corpus. In natural language processing, one
is more likely to hear consideration given to linguistics, and therefore to the
processes of breaking text into its component grammatical components such
as nouns and verbs. In the case of the tm add-on package for R, we are
definitely in the statistical camp, where the main process is to break down a
corpus into sequences of words and then to tally up the different words and
sequences we have found.
To begin, make sure that the tm package is installed and libraried in your
copy of R and RStudio. Once the tm package is ready to use, you should be
able to run these commands:

In the first step, we coerce our text file vector (sba) into a custom Class
provided by the tm package and called a corpus, storing the result in a new
data object called words.corpus. This is the first time we have directly
encountered a class. The term class comes from an area of computer
science called “object-oriented programming.” Although R is different in
many ways from object-oriented languages such as Java, it does contain
many of the basic features that define an object-oriented language. For our
purposes here, there are just a few things to know about a class. First, a



class is nothing more or less than a definition for the structure of a data
object. Second, classes use basic data types, such as numbers, to build up
more-complex data structures. For example, if we made up a new
Dashboard class, it could contain one number for Miles Per Hour, another
number for RPM, and perhaps a third one indicating the remaining Fuel
Level. That brings up another point about classes: Users of R can build their
own. In this case, the author of the tm package, Ingo Feinerer, created a new
class, called corpus, as the central data structure for text mining functions.
(Feinerer is a computer science professor who works at the Vienna
University of Technology in the Database and Artificial Intelligence
Group.) Last, and most important for this discussion, a class not only
contains definitions about the structure of data, but it also contains
references to functions that can work on that class. In other words, a class is
a data object that carries with it instructions on how to do operations on it,
from simple things like add and subtract all the way up to complicated
operations such as graphing.
In the case of the tm package, the corpus class defines the most
fundamental object that text miners care about: a corpus containing a
collection of documents. Once we have our texts stored in a corpus, the
many functions that the tm package provides to us are available to use in
processing and analyzing our textual data. The last four commands in the
group above show the use of the tm_map() function, which is one of the
powerful capabilities provided by tm. In each case where we call the
tm_map() function, we are providing words.corpus as the input data, and
then we are providing a command that undertakes a transformation on the
corpus. We have done four transformations here, first making all of the
letters lowercase, then removing the punctuation, then removing numbers,
and finally taking out the so-called stop words.
The stop words deserve a little explanation. Researchers who developed the
early search engines for electronic databases found that certain words
interfered with how well their search algorithms worked. Words such as the,
a, and at appeared so commonly in so many different parts of the text that
they were useless for differentiating between documents. The unique and
unusual nouns, verbs, and adjectives that appeared in a document did a
much better job of setting a document apart from other documents in a
corpus, such that researchers decided that they should filter out all of the



short, commonly used words. The term stop words seems to have originated
in the 1960s to signify words that a computer processing system would
throw out or stop using because they had little meaning in a data processing
task. To simplify the removal of stop words, the tm package contains lists of
such words for different languages. In the last command on the previous
page we requested the removal of all of the common stop words.
At this point we have processed our corpus into a nice uniform bag of
words that contains no capital letters, punctuation, or stop words. We are
now ready to conduct a kind of statistical analysis of the corpus by creating
what is known as a term-document matrix. The following command from
the tm package creates the matrix:

A term-document matrix, also sometimes called a document-term matrix, is
a rectangular data structure with terms as the rows and documents as the
columns (in other uses you might also make the terms as columns and
documents as rows). A term can be a single word, for example, “biology,”
or it could also be a compound word, such as “data analysis.” The process
of determining whether words go together in a compound word can be
accomplished statistically by seeing which words commonly go together, or
it can be done with a dictionary. The tm package supports the dictionary
approach, but we have not used a dictionary in this example. So if a term
like data appears once in the first document, twice in the second document,
and not at all in the third document, then the column for the term data will
contain 1, 2, 0.
The statistics reported when we ask for tdm on the command line give us an
overview of the results. The TermDocumentMatrix() function extracted 189
terms. The resulting matrix mainly consists of zeros: Out of 2,610 cells in
the matrix, only 225 contain non-zero entries, while the rest contain zeros.
A zero in a cell means that that particular term did not appear in that



particular document. Finally, the last line, starting with Weighting, indicates
what kind of statistic was stored in the term-document matrix. In this case
we used the default, and simplest, option that simply records the count of
the number of times a term appears across all of the documents in the
corpus. You can peek at what the term-document matrix contains by using
the following inspect function:

inspect(tdm)
Be prepared for a large amount of output. Remember the term “sparse” in
the summary of the matrix? Sparse refers to the overwhelming number of
cells that contain zero—indicating that the particular term does not appear
in a given document. Most term document matrices are quite sparse. This
one is 92% sparse. In most cases, we will need to cull or filter the term-
document matrix for purposes of presenting or visualizing it. The tm
package provides several methods for filtering out sparsely used terms, but
in this example we are going to leave the heavy lifting to the word cloud
package.
Creating Word Clouds
As a first step we need to install and library() the wordcloud package. The
wordcloud package was written by freelance statistician Ian Fellows, who
also developed the Deducer user interface for R. Deducer provides a
graphical interface that allows users who are more familiar with SPSS or
SAS menu systems to be able to use R without resorting to the command
line.
Once the wordcloud package is loaded, we need to do a little preparation to
get our data ready to submit to the word cloud generator function. That
function expects two vectors as input arguments: The first is a list of the
terms, and the second is a list of the frequencies of occurrence of the terms.
The list of terms and frequencies must be sorted with the most frequent
terms appearing first. To accomplish this, we first have to coerce our text
data back into a plain data matrix so that we can sort it by frequency. The
first command below accomplishes this:



In the next two commands above, we first are calculating the sums across
each row, which gives us the total frequency of a term across all of the
different sentences/documents. We then are sorting the resulting values with
the highest frequencies first. The result is a named list: Each item of the list
has a frequency and the name of each item is the term to which that
frequency applies. Finally, we can see the top words, in terms of frequency.
For example, the word women was used seven times in Anthony’s speech.
Now we are ready to create a word cloud. The wordcloud() function has
lots of optional parameters for making the word cloud more colorful,
controlling its shape, and controlling how frequent an item must be before it
appears in the cloud, but we have used the default settings for all of these
parameters for the sake of simplicity. We pass to the wordcloud() function
the term list and frequency list that we just created and wordcloud()
produces the nice graphic that you see in Figure 14.1.
Now, let’s use some of the optional parameters to make a more visually
appealing visualization. We can specify the minimum word frequency of 2,
a maximum number of 50, the percentage of words rotates to be 35%. The
brewer.pal() code below will make a nice range of colors, but in Figure 14.2
they show as shades of gray.

To recap, in this chapter we explored the possible use of word clouds and
learned how to create word clouds in R. In the next chapter we will move
on to sentiment analysis, which is another text mining technique.



Figure 14.1

Figure 14.2



Chapter Challenge(s)
Create a word cloud for a recent document you created (a longer
e-mail or a Word document). Save the file as a text file (a.txt
file, if you are using Word) and then create a word cloud. Does
the word cloud convey the key points of the document?

Sources
http://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
http://en.wikipedia.org/wiki/Document-term_matrix
http://en.wikipedia.org/wiki/Stop_words
http://en.wikipedia.org/wiki/Text_mining
http://stat.ethz.ch/R-manual/R-
devel/library/base/html/colSums.html
http://www.jasondavies.com/wordcloud/

R Functions Used in This Chapter

http://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
http://en.wikipedia.org/wiki/Document-term_matrix
http://en.wikipedia.org/wiki/Stop_words
http://en.wikipedia.org/wiki/Text_mining
http://stat.ethz.ch/R-manual/R-devel/library/base/html/colSums.html
http://www.jasondavies.com/wordcloud/




15 Happy Words?
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Learning Objectives
Demonstrate accessing and analyzing unstructured data.
Explain sentiment analysis.
Code and use the sentiment analysis text mining technique.
Assess other uses of text mining.
Practice doing R coding and using the following R functions:
scan, names, match.



Although word clouds are a good first step, another useful analysis
technique for textual data is known as sentiment analysis. For example, how
positive or negative are reviews (or tweets) about a product. Sentiment
analysis sounds really complicated, and in fact, there are many ways to do
sentiment analysis, but we will use a basic strategy. Our process will start
with a “dictionary” of positive and negative words (that others have
created) and then just count how many positive words there are in our text
and how many negative words there are in our text. Given this, we can
compute a positive score and a negative score for any text.
Sentiment Analysis
Let’s continue to use the same text as we used in the previous chapter
(Susan B. Anthony’s speech). Was it a positive speech? Let’s find out. First,
let’s load the positive and negative files and clean them up to get ready to
use. To find a positive and a negative word list, we can use a nice website
on sentiment analysis: https://www.cs.uic.edu/~liub/FBS/sentiment-
analysis.html
About halfway down the web page, you can see a section titled “Opinion
Lexicon (or Sentiment Lexicon).” The first bullet in this section contains a
link to a list of positive and negative opinion words or sentiment words for
English. When you click on this link it downloads a compressed file that
contains a folder that has both positive and negative words. Specifically,
there will be one text file is for the positive words and one text file is for the
negative words. Once you download those files, save them to a place where
R can easily access them. Now let’s get to the R coding:

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html


OK. Let’s review what we just did. First, we read the text files. Note this
code assumes the text files are in R’s default directory. If you didn’t know,
you can get and set R’s working directory with the getwd and setwd
functions. The positive file had 2,040 words, and the negative file had 4,817
words, but some of this might have been headers. This seems to suggest that
there are more ways to say something in a negative way than in a positive
way. That’s kind of interesting in itself, but let’s press on and take a look at
the start of the positive file:

Yup, as one might guess, we can see that there is useful (for humans, not
our code) header information, so we need to remove those elements.



That looks like the start of a good list of positive and negative words! Since
we already have the word file we want to examine (from the previous
chapter, the wordCounts variable), the next step is to count the total number
of words in our text (stored in wordCounts).

Next, we somehow need to figure out how to count the number of positive
and negative words in wordCounts. To do this, we need to use the match
function, which returns a vector of the positions of (first) matches of its first
argument in its second. When there is no match, we can specify to return a
specific number (such as zero [0]).

We can see that the first eight words did not match, but the ninth word did
match. This is confirmed with the code below, where we can see that the
ninth word in “words” should be the same as the 1,083rd word in “p”—and
indeed, they are both the word liberty.



Now that we have the list of matched positive words, we just have to get the
counts of all the words that did match.

So, we can see that there were 17 positive words (note that some of the
words were repeated, and in fact, there were 12 unique positive words used
in the speech—which is why there was only 12 items in mCounts). Now
let’s do the same for the negative words.

We can see that there were 13 negative words (and 11 unique negative
words that were used). Great! After all this work, we have all the
information we need to calculate the percentage of positive and negative
words for this speech, which you can see in the following lines of R code:



Given this, we can see that Susan B. Anthony’s speech was made up of
about 9% positive and a little less than 7% negative words. What do you
conclude about the nature of her speech?
Other Uses of Text Mining
While we have focused on using text mining for sentiment analysis, there
are many other uses for text mining. While space does not allow use to
discuss all the different possible uses of text mining, let’s explore three
different scenarios where text mining might be useful.
A very common example is to do text mining on tweets. When someone
mines tweets, she can explore the frequency of a certain hashtag or how a
specific tweet or hashtag can go viral (which is related to the phrase
“trending on Twitter”). In addition, a company can use text mining to
review tweets to get an understanding of how consumers view their
product.
In a different example, text mining can also be used in call centers. For
example, for an inbound call center (where people call into a call center
with questions or to order a product), it is helpful to know what people are
talking about on the phone. Using speech-to-text, an organization can
generate text documents, which can then be analyzed using text mining to
create a list of key words per call. The organization might show this list to
the call center representative (so that person can select the most relevant
keywords) or the organization might focus on the frequency of the key
words used. Armed with these data for each call, the organization can then
do analysis of what customers talk about during the call, and determine if
these key words change over time. For example, a top 10 complaint list can



be generated and the managers can see how this list changes over time. In a
related use of text mining, notes about repairs (e.g., by a heating
manufacturer) could be analyzed to determine if specific keywords
(representing specific components in the system) are causing issues at a
higher-than-expected rate.
In one last example, we can use text mining to do an analysis for a specific
industry by text mining news feeds to extract the names of people, areas of
focus, and companies that occur in the news—for example, those focusing
on data science. The goal would be to try to infer who the key people are in
that field or how different areas of focus change over time; for instance,
maybe next year people will talk more about text mining, as compared to
other data science techniques.
To recap, in this chapter we explored sentiment analysis, a text mining
technique that attempts to determine how positive or negative an
unstructured text document is. We also reviewed some other possible
scenarios where text mining could be used, such as analyzing customer
comments (via Twitter or other communication channels). In the next
chapter, we will move on to more-advanced analytical models, focusing on
more-structured data sets.

Chapter Challenge(s)
Generate positive and negative sentiment analysis across a range
of speeches to see if there are patterns to when speeches (or
parts of speeches) are positive or negative.

Sources
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

R Functions Used in This Chapter

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html


16 Lining Up Our Models

© iStockphoto.com/marekuliasz

Learning Objectives
Explain data science modeling techniques.
Use models to interpret and understand the data.
Utilize the lm package to create and interpret a linear regression
model.

Finding relationships between sets of data is one of the key aims of data
science. The question, “Does x influence y?” is of prime concern for data
analysts: Are house prices influenced by incomes? Is the growth rate of
crops improved by fertilizer? Do taller sprinters run faster? We can start the
process of answering these kinds of questions by building models—in
particular, linear prediction models, or what statisticians often call
regression models.
What Is a Model?
In order to build a model, we first need to understand what a model is.
People use the word model in many ways. Some have nothing to do with



data, such as using the term to connote a person who might appear in a
magazine wearing a certain sweater, shirt, or watch. Another use of the
word describes a small representation of an object (such as a model
railroad). Even when we start talking about data, there are multiple uses of
the word model. For example, in Chapter 4 we discussed data modeling. If
you remember, data modeling (or data models) help data scientist follow
and understand data that have been stored in a repository (such as a
database). One example of a data model that was mentioned was an entity-
relationship diagram, which describes the structure and movement of data
in a system.
In this chapter, we do not want to discuss people that model clothes,
miniature trains, or data models. We want to discuss prediction models that
are created from a statistical analysis process (in our case, from procedures
offered by R). These models analyze data that the user supplies (such as a
dataframe of observations) and then calculate a set of numerical coefficients
that help us with prediction.
Linear Modeling
A work-horse method used by statisticians to interpret data is linear
modeling, also known as linear regression, which is a term covering a wide
variety of methods, from the relatively simple to the very sophisticated.
However, all these methods create a model that can be used for prediction.
You can get an idea of how many different methods there are by looking at
the regression analysis page in Wikipedia and checking out the number of
models listed on the right-hand sidebar (and, by the way, the list is not
exhaustive).
The original ideas behind linear regression were developed by some of the
usual suspects behind many of the ideas we’ve seen already, such as Gauss,
Galton, and Pearson. The biggest individual contribution was probably by
Gauss, who used the procedure to predict movements of the other planets in
the solar system when they were hidden from view and, hence, to correctly
predict when and where they would appear again.
The basis of all these methods is the idea that for many kinds of data it is
possible to fit a line to a set of data points that represents the connection
between an independent variable and a dependent variable. It is easy to
visualize how this works with one variable changing in step with another



variable. Figure 16.1 shows a line fitted to a series of points, using the so-
called least squares method (a relatively simple mathematical method of
finding a best-fitting line). The chart shows how the relationship between
an input (independent) variable—on the horizontal X-axis—relates to the
output (dependent) values on the Y-axis. In other words, the output variable
is dependent (is a function of) the independent variable.
Figure 16.1

Note that although the line fits the points fairly well, with an even split (as
even as it can be for five points!) of points on either side of the line, none of
the points is precisely on the line—the data do not fit the line precisely. As
we discuss the concepts in regression analysis further, we will see that
understanding these discrepancies is just as important as understanding the
line itself. The other important thing to note is that just because we have
called the X-axis variable “independent” and the Y-axis variable
“dependent” does not mean that X causes Y. Statisticians have an old saying
that is very important to remember: “Correlation does not mean causation.”
The mathematical idea that allows us to create lines of best fit for a set of
data points like this is that we can find a line that will minimize the distance
the line is from all the points. Once the model calculates the line that
minimizes the distance for all the points, the model can represent the line
with an equation you might remember from algebra:

Y = MX + B.



Do not worry if you have never taken an algebra course: All you need to
understand is that the equation has two coefficients (numbers with specific
values for each model) that describe the line (M and B). M describes the
slope of the line and B describes the height of the line (more precisely,
where the line crosses the Y-axis, also known as the Y-intercept). With M
and B known, the equation can be used to predict Y values (for any given X
value).
So, given a list of points, an algorithm (available in R) will generate what it
thinks is the best-fitted line for the data points. In other words, the R can
calculate the appropriate M and B. It is this computer code that generates
our model (i.e., the values of M and B). If you know M and B, you can use
any new X value, together with the equation for the line (Y = MX + B), to
calculate a predicted Y value.
The details of how R calculates the values of M and B are not particularly
difficult, but they are beyond the scope of this chapter. If you are curious to
learn more, trying looking up the term “ordinary least squares.” The
ordinary least squares fitting method is one of the simplest and most
commonly used strategies for figuring out the best-fitting line. When we
use the lm() function in the material that follows, we are using the least
squares method to discover the slope and intercept of the best-fitting line.
An Example—Car Maintenance
Is changing the oil of a car more frequently a good thing? Does it save
money in the long run? Let’s use linear regression to try and answer this
question. In this example, we were just put in charge of maintaining a fleet
of company cars. We know that the company replaces the cars every three
years, and in fact the company just replaced the cars (i.e., bought a new
fleet of cars). The person who was previously in charge of the car
maintenance didn’t have a schedule for when to change the oil but rather
changed the oil whenever the car was available. Luckily, the maintenance
records were available, and now we want to try and figure out, in a more
data-driven approach, if changing the oil frequently is a good idea. The
following R code defines our data set:



First, let’s look at Figure 16.1 at the data that were collected for the cars that
were just replaced (i.e., our data set). The data have three columns of
information. First, there is the number of oil changes that each car had
during the past three years. The next column shows the total amount of
repairs (in dollars). Finally, we have the miles driven by each car.
Given these data, let’s figure out how the number of oil changes and miles
driven are connected to repair costs. Our independent variables are
oilChanges and miles. The dependent variable (the one we are trying to
predict) is repairs. Before building a model, we can do some exploratory



analysis, which data scientists often do prior to building a model. Figure
16.2 shows the plot of points created by the following R command:

> plot(oil$oilChanges, oil$repairs)
We can see a general trend: The repairs are high when the number of oil
changes is low, and the repairs are low when the number of oil changes is
high. There seems to be a pattern! Now let’s explore miles and repairs:

> plot(oil$miles, oil$repairs)
Figure 16.2

Figure 16.3



This doesn’t look nearly as interesting: There does not appear to be a
pattern. So let’s build our first model in R with oilChanges as the
independent variable. Below is the code for building a linear model:

> model1 <- lm(formula=repairs ~ oilChanges, data=oil)
The lm() command places its output in a data structure (the model that we
just created), and we want to hang on to the model, so we store the results
of lm() in the variable called model1. Note that the lm command takes two
parameters: the first tells lm to use oilChanges to predict repairs. The
squiggly line [~], which is called a tilde character, is part of the syntax that
tells lm() which independent and dependent variables to include in the
model. In this case you can read “repairs ~ oilChanges” as “use oilChanges
to predict repairs.” The other parameter tells lm the name of the dataframe
we are using. In the next command, we request an overview of the contents
of our model.



Wow! That’s a lot information that R has provided for us, and we need to
use this information to decide whether we are happy with this model. Being
happy with the model involves a variety of considerations, and there is no
simple way of deciding what is a good model and what is not. To start, we
will look at the R-squared value, also known as the coefficient of
determination.
The R squared value—the coefficient of determination—represents the
proportion of the variation that is accounted for in the dependent variable
by the whole set of independent variables (in this case there is just one). An
R-squared value of 1.0 would mean that the X variable(s) as a set perfectly
predicted the Y (the dependent variable). An R-squared value of zero would
indicate that the X variable(s) as a set did not predict the Y variable at all.
R-squared cannot be negative. The R-squared of .8653 in this example
means that the oilChanges variable accounts for about 87% of the



variability in repair costs. Note that there is no absolute rule for what makes
an R-squared value good. Much depends on the context and purpose of the
analysis. In the analysis of human behavior, which is notoriously
unpredictable, an R-squared of .20 or .30 could be considered extremely
good. Then again, in predicting something more mechanical like engine
repair costs, an R-squared of .60 or .70 might be considered very poor.
There is also a significance test on the value of R-squared. Significance
testing is sufficiently complex that there are whole books written about it,
but you will need a rule of thumb to make sense out of results like these.
Whenever you see output from R that says something like p-value or
Pr(>|t|) the corresponding numeric value refers to the probability of
observing a result this extreme under the assumption that the “true”
situation is that the result is really zero. Imagine if we had an omniscient
understanding of all oil changes and repairs everywhere and we knew from
having this super power that in fact there is absolutely no connection
between oil changes and repairs. Given that reality, it would be extremely
unlikely to observe a value of R-squared of .8653 because that value is so
far from zero. The p-value quantifies that scenario. The rule of thumb is that
when you observe a p-value that is less than 0.05, you can call that
statistically significant, and you can take away a sense that your results
were probably not due to randomness (specifically, a problem known as
“sampling error”).
While the R-squared is one of the first things you might examine in the
model, let’s also explore some of the other outputs. First, at the top of the
output we can see the actual function call used to create the model. This is
helpful if we are exploring a model, but didn’t see the original R code used
to create the model. Next, we can see the residuals, which are the difference
between the actual observed values and the values that the model predicted
(these are the “errors” that ordinary least squares tries to minimize). We see
five summary points about residuals. One way to explore how well the
model fits the data is to see if the residuals are symmetrically distributed
across these five summary points and for the median to be close to zero.
The next section in the model output talks about the coefficients of the
model. The coefficients are two unknown constants that represent the
intercept and slope terms in the linear model (remember the equation
Y=MX+B: the slope is M and the intercept is B). In this example, the



coefficient estimate contains two rows; the first row is the intercept. The
intercept, in our example, is essentially the expected value of the repairs
when there were zero oil changes. The second row in the coefficients is the
slope, or, in our example, the effect oil changes have on vehicle repairs. The
slope term in our model is saying that for every additional oil change, the
expected repairs decrease by about $72.
Both the slope and the Y-intercept have statistical significance tests
associated with them. As described earlier, we are generally looking for
values of p that are less than 0.05. In the output earlier, both the Y-intercept
and the slope coefficient for oilChanges are statistically significant because
the p-values for each are much smaller than 0.05. Note the signif. codes
associated to each estimate. One, two, or three asterisks denote a significant
p-value. Because both the R-squared value and the slope coefficient on
oilChanges are significant, we can “reject the null hypothesis” that oil
changes and repairs are not connected. So this regression model provides
evidence that as the number of oil changes rises, repair costs decline. Don’t
forget our caution about correlation and causation! These results certainly
do not prove that doing more oil changes causes repair costs to go down,
although that is one sensible possibility.
Next, Figure 16.4 shows the line of best fit (based on the model to the X-Y
plot of repair costs against oil changes with this command:

> plot(oil$oilChanges, oil$repairs)
> abline(model1)

The model above suggests that we should do as many oil changes as
possible. For example, it predicts very low (almost zero [0]) repairs if we do
nine or more oil changes, but about $680 if we do no oil changes.
Figure 16.4



Next, let’s try using both oilChanges and miles to calculate the linear
model. This is sometimes known as multiple linear regression. Perhaps both
variables could do a better job predicting repair costs (as opposed to just
using oilChanges). We can test if using both oilChanges and miles improves
the model with the following R code:



Note that oilChanges is statistically significant but miles is not. You can see
this because the p-value for miles, under the column labeled Pr(>|t|), is
0.203, considerably larger than our cutoff point of p less than 0.05. This
result is not surprising, since our initial plot of data suggested that miles did
not seem to connect with repair costs. So, in this case, we stick with our
original model where we predict repair costs as a function of the number of
oil changes.
Although we are done with the statistical piece of this analysis, there is one
additional practical matter that we can explore. So far, we did not consider
the cost of an oil change into our analysis. Let’s pretend that oil changes are
very expensive because when the car is not in service, the person that



should be driving the car is not able to be productive. Let’s say that after
taking into account this lost productivity, the real cost of stopping to do an
oil change is $350 per oil change. The following code creates additional
columns in our data set to compute and show the total cost for each car
(which is the cost of the repairs plus the cost of doing the oil changes). The
code then creates a new linear model using the number of oilChanges to
predict totalCost and plots the results (see Figure 16.5).

> oil$oilChangeCost <- oil$oilChanges * 350
> oil$totalCost <- oil$oilChangeCost + oil$repairs
> m <- lm(formula=totalCost ~ oilChanges, data=oil)
> plot(oil$oilChanges, oil$totalCost)
> abline(m)

Figure 16.5

Wow—now the analysis shows that we shouldn’t do any oil changes! To
use this model for prediction, we can have R calculate the total repair costs
for a given number of oil changes with the following R code:



We can see that as the number of oil changes increases, so does the
predicted total cost of maintenance. Beware that because totalCost (the
dependent variable) was calculated as a function of oilChanges (the
independent variable), the R-squared value and its associated significance
test is artificially inflated and should be ignored. Generally speaking, you
should never include an independent variable in a regression analysis if it
has a formulaic connection to the dependent variable. In this case, we just
did that in order to get R to produce some calculated values for us that
included the oil change cost.
Finally, we can see the same result using ggplot2 (see Figure 16.6):

Figure 16.6



One additional note—in this scenario as well as other common research
scenarios we might not have access to all the important information that
needs to be modeled. For example, perhaps there was additional
maintenance done on the car beyond oil changes? What if some drivers put
more wear and tear on the cars than others? What if some cars operated in a
dusty environment but others did not? These questions show the variety of
possible influences that occur in real life versus the variables that we have
actually measured to create the model. Very often we can develop a model,
but we are not sure if the model covers all the data that could possibly
impact the results of our analysis. That’s another good reason to remember
that correlation does not equal causation!
In this chapter, we explored how to model data using a linear model, also
known as a regression model. Linear modeling works with two or more
variables to ascertain the linear relationship that might exist between the
independent variables (one or more X variables) and a dependent variable.
This type of modeling can be applied when the data you have contain
numeric measurements of some phenomenon. In the next chapter, we will



explore a very different modeling technique known as association rules
mining that works to discover patterns in lists of items.

Chapter Challenge
You might find it interesting to explore a write-up of some
actual work done on predictive car maintenance. While, not
surprisingly, the following blog post includes many techniques
beyond linear modeling, it also demonstrates the challenge of
collecting useful and actionable data.
https://blog.pivotal.io/data-science-pivotal/products/the-data-
science-behind-predictive-maintenance-for-connected-cars
As a chapter challenge in using lm, try to create a linear model
of the supplied data set airquality. Which variable do you think
is the dependent variable? What is the best model you can
create? How good is that model?

Sources
http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/lm.html
http://www.ddiez.com/teac/r/linear_models.php
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17 Hi Ho, Hi Ho—Data Mining We Go
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Learning Objectives
Understand and apply the four data mining processes (data
preparation, exploratory data analysis, model development,
interpretation of results).
Understand and be able to use the association rules mining
algorithm.
Develop data mining R code using the arules package.

One famous example of data mining that gets mentioned quite frequently is
the supermarket that analyzed patterns of purchasing behavior and found
that diapers and beer were often purchased together. The supermarket
manager decided to put a beer display close to the diaper aisle and



supposedly sold more of both products as a result. Another familiar
example comes from online merchant sites that say things like “People who
bought that book were also interested in this book.” By using an algorithm
to look at purchasing patterns, vendors are able to create automatic systems
that make these kinds of recommendations.
Over recent decades, statisticians and computer scientists have developed
many different algorithms that can search for patterns in different kinds of
data. As computers get faster and the researchers do additional work on
making these algorithms more efficient, it becomes possible to look through
larger and larger data sets looking for promising patterns. Today we have
software that can search through massive data haystacks looking for lots of
interesting and usable needles.
Some people refer to this area of research as machine learning. Machine
learning focuses on creating computer algorithms that can use preexisting
inputs to refine and improve their own capabilities for dealing with future
inputs. Machine learning is very different from human learning. When we
think of human learning, like learning the alphabet or learning a foreign
language, we see that humans can develop flexible and adaptable skills and
knowledge that are applicable to a range of different contexts and problems.
Machine learning is more about figuring out patterns of incoming
information that correspond to a specific result. For example, given lots of
examples like this—input: 3, 5, 10; output: 150—a machine-learning
algorithm could figure out on its own that multiplying the input values
together produces the output value.
Machine learning is not exactly the same thing as data mining. Not all data
mining techniques rely on what researchers would consider machine
learning. Likewise, machine learning is used in areas like robotics that we
don’t commonly think of when we are thinking of data analysis or data
mining.
Data Mining Overview
Data mining typically includes four processes: (1) data preparation, (2)
exploratory data analysis, (3) model development, and (4) interpretation of
results. Although this sounds like a neat, linear set of steps, there is often a
lot of back and forth through these processes, and especially among the first
three. The other point that is interesting about these four steps is that Steps



3 and 4 seem like the most fun, but Step 1 usually takes the most time. Step
1 involves making sure that the data are organized in the right way, that
missing data fields are filled in, that inaccurate data are located and repaired
or deleted, and that data are recoded as necessary to make them amenable to
the kind of analysis we have in mind.
Step 2 is very similar to activities we have done in earlier chapters of this
book: getting to know the data using histograms and other visualization
tools and looking for preliminary hints that will guide our model choice.
The exploration process also involves figuring out the right values for key
parameters. We will see some of that activity in this chapter.
Step 3—choosing and developing a model—is by far the most complex and
most interesting of the activities of a data miner. It is here where you test
out a selection of the most appropriate data mining techniques. Depending
on the structure of a data set, there could be dozens of options, and
choosing the most promising one has as much art in it as science. We had
some practice performing model development in Chapter 16.
For the current chapter we are going to focus on just one data mining
technique, albeit one that is quite powerful and applicable to a range of very
practical problems. So we will not really have to do Step 3 because we will
not have two or more different mining techniques to compare. The
technique we will use in this chapter is called “association rules mining,”
and it is the strategy that was used to find the diapers and beer association
described earlier.
Step 4—the interpretation of results—focuses on making sense out of what
the data mining algorithm has produced. This is the most important step
from the perspective of the data user, because this is where an actionable
conclusion is formed. When we discussed the example of beer and diapers,
the interpretation of the association rules that were derived from the grocery
purchasing data is what led to the discover of the beer–diapers rule and the
use of that rule in reconfiguring the displays in the store.
Association Rules Data
Let’s begin by talking a little about association rules. Have a look at all of
the boxes and arrows in Figure 17.1.
From the figure you can see that each supermarket customer has a grocery
cart that contains several items from the larger set of items that the grocery



store stocks. The association rules algorithm (also sometimes called affinity
analysis or market-basket analysis) tries out many different propositions,
such as “If diapers are purchased, then beer is also purchased.” The
algorithm uses a data set of transactions (in the example above, these are
the individual carts) to evaluate a long list of these rules for a value called
support. Support is the proportion of times that a particular pairing occurs
across all shopping carts. The algorithm also evaluates another quantity
called confidence, which is how frequently a particular pair occurs among
all the times when the first item is present. If you look back at the figure
again, we had support of 0.67 (the diapers–beer association occurred in two
out of the three carts) and confidence of 1.0 (“beer” occurred 100% of the
time with “diapers”). In practice, both support and confidence are generally
much lower than in this example, but even a rule with low support and
smallish confidence might reveal purchasing patterns that grocery store
managers could use to guide pricing, coupon offers, or advertising
strategies.
Figure 17.1



Association Rules Mining
We can get started with association rules mining very easily using the R
package known as arules. In RStudio, you can get the arules package ready
using the following commands:

> install.packages(“arules”)
> library(arules)

We will begin our exploration of association rules mining using a data set
that is built in to the arules package. For the sake of familiarity, we will use
the Groceries data set. Note that by using the Groceries data set we have
relieved ourselves of the burden of data preparation, because the authors of
the arules package have generously made sure that Groceries is ready to be
analyzed. So we are skipping right to Step 2 in our four-step process—
exploratory data analysis. You can make the Groceries data set ready with
this command:

> data(Groceries)
Next, let’s run the summary() function on Groceries so that we can see what
is in there:



Right after the summary command line we see that Groceries is an
itemMatrix object in sparse format. So what we have is a nice, rectangular
data structure with 9,835 rows and 169 columns, where each row is a list of
items that might appear in a grocery cart. The word matrix, in this case, is
just referring to this rectangular data structure. The columns are the
individual items. A little later in the output we see that there are 169
columns, which means that there are 169 items. The reason the matrix is
called sparse is that very few of these items exist in any given grocery
basket. By the way, when an item appears in a basket, its cell contains a one
(1), while if an item is not in a basket, its cell contains a zero (0). So in any
given row, most of the cells are zero and very few are one, and this is what



is meant by sparse. We can see from the Min, Median, Mean, and Max
outputs that every cart has at least one item, half the carts have more than
three items, the average number of items in a cart is 4.4, and the maximum
number of items in a cart is 32.
The output also shows us which items occur in grocery baskets most
frequently. If you like working with spreadsheets, you could imagine going
to the very bottom of the column that is marked “whole milk” and putting
in a formula to sum up all of the ones in that column. You would come up
with 2,513, indicating that there are 2,513 grocery baskets that contain
whole milk. Remember that every row/basket that has a one in the whole
milk column contains whole milk, whereas every row/basket with a zero
does not contain whole milk. You might wonder what the data field would
look like if a grocery cart contained two gallons of whole milk. For the
present data mining exercise, we can ignore that problem by assuming that
any non-zero amount of whole milk is represented by a one. Other data
mining techniques could take advantage of knowing the exact amount of a
product, but association rules does not need to know that amount—just
whether the product is present or absent.
Another way of inspecting our sparse matrix is with the
itemFrequencyPlot() function. This produces a bar graph that is similar in
concept to a histogram: It shows the relative frequency of occurrence of
different items in the matrix. When using the itemFrequencyPlot() function,
you must specify the minimum level of support needed to include an item in
the plot. Remember the mention of support earlier in the chapter—in this
case it simply refers to the relative frequency of occurrence of something.
We can make a guess as to what level of support to choose based on the
results of the summary() function we ran earlier in the chapter. For
example, the item “yogurt” appeared in 1,372 out of 9,835 rows, or in about
14% of cases. So we can set the support parameter to somewhere around
10% and 15% in order to get a manageable number of items:

> itemFrequencyPlot(Groceries,support=0.1)
This command produces the plot in Figure 17.2:
Figure 17.2



We can see that yogurt is right around 14% as expected, and we also see a
few other items not mentioned in the summary such as bottled water and
tropical fruit.
You should experiment with using different levels of support, just so that
you can get a sense of the other common items in the data set. If you show
more than about 10 items, you will find that the labels on the X-axis start to
overlap and obscure one another. Use the cex.names parameter to reduce
the font size on the labels. This will keep the labels from overlapping at the
expense of making the font size much smaller (see Figure 17.3). Here’s an
example:

> itemFrequencyPlot(Groceries,
+   support=0.05,cex.names=0.5)

Figure 17.3



This command yields about 25 items on the X-axis. Without worrying too
much about the labels, you can also experiment with lower values of
support, just to get a feel for how many items appear at the lower
frequencies. We need to guess at a minimum level of support that will give
us quite a substantial number of items that can potentially be part of a rule.
Nonetheless, it should also be obvious that an item that occurs only very
rarely in the grocery baskets is unlikely to be of much use to us in terms of
creating meaningful rules. Let’s pretend, for example, that the item
“Venezuelan Anteater Cheese” occurred only once in the whole set of 9,835
carts. Even if we did end up with a rule about this item, it won’t apply very
often, and is therefore unlikely to be useful to store managers or others. So
we want to focus our attention on items that occur with some meaningful
frequency in the data set. Whether this is 1% or 0.005, or something
somewhat larger or smaller will depend on the size of the data set and the
intended application of the rules.
Before we generate some rules, let’s take a step back and explore the type
of data object that itemFrequencyPlot (and the other associated functions



with arules) needs. You might have noticed that it is not a dataframe (you
can see this by doing the str command on the Groceries data set). In fact,
you can see it is a transactions data set. But what if we have a dataframe:
Can we convert it to a transactions data set? Yes, sometimes this is possible,
but it depends on the dataframe. Let’s look at a different dataframe and
convert it to a transactions data set. This time, we will use the AdultUCI
data set. If you want to explore what the columns in the data set mean, you
can do the help(AdultUCI) command at the R console to get some
additional information. In any event, you can see that we first need to
convert any numbers or strings into factors. Also note that since some of the
column names have a hyphen (-), we need to quote that column name, so R
does not get confused and think, for example, that we want to subtract num
from AdultUCI$education. After doing all this work, we can finally convert
the dataframe into a transactions data set, which we can then use to generate
an itemFrequencyPlot (see Figure 17.4).

Figure 17.4



OK, now that we understand a little more about the transactions data set, we
are ready to generate some rules with the apriori() command. The term
“apriori” refers to the specific algorithm that R will use to scan the data set
for appropriate rules. Apriori is a very commonly used algorithm, and it is
quite efficient at finding rules in transaction data.
Exploring How the Association Rules Algorithm
Works
Apriori uses an iterative approach known as level-wise search. Basically, at
the first level, we have one-item sets (i.e., individual items such as bread or
milk), which are frequently found (i.e., have sufficient support, as defined
in the apriori command). At the next level, the two-item sets we need to
consider must have the property that each of their subsets must be frequent
enough to include (i.e., they have sufficient support). The algorithm keeps
going up levels until there is no more analysis to do. So, for example, as
shown in Table 17.5, if we know at Level 2 that the sets {Milk Tea}, {Bread
Tea}, {Bread Fish} and {Tea Fish} are the only sets with sufficient support,
then at Level 3 we join these with each other to produce {Milk Tea Bread},
{Milk Tea Fish}, {Milk Bread Fish} and {Bread Tea Fish}. But we only



need to consider {Bread Tea Fish}, since the others each have subsets with
insufficient support—such as {Milk Fish} or {Milk Bread}.
Figure 17.5

Apriori rules are in the form of “if LHS, then RHS.” The abbreviation LHS
means “left-hand side,” and naturally, RHS means “right-hand side.” So
each rule states that when the thing or things on the left-hand side of the
equation occur(s), the thing on the right-hand side occurs a certain
percentage of the time. To reiterate a definition provided earlier in the
chapter, support for a rule refers to the frequency of cooccurrence of both
members of the pair, that is, LHS and RHS together. The confidence of a
rule refers to the proportion of the time that LHS and RHS occur together
versus the total number of appearances of LHS. For example, if Milk and
Bread occur together in 10% of the grocery carts (i.e., support), and Milk
(by itself, ignoring Bread) occurs in 25% of the carts, then the confidence of
the Milk/Bread rule is 0.10/0.25 = 0.40.
There are a couple of other measures that can help us zero in on good
association rules—such as lift and conviction—but we will put off
discussing these until a little later.
One last note before we start using apriori(). For most of the work the data
miners do with association rules, the RHS part of the equation contains just



one item, like Bread. On the other hand, the LHS part can and will contain
multiple items. A simple rule might just have Milk in LHS and Bread in
RHS, but a more complex rule might have Milk and Bread together in LHS
with Tea in RHS. OK, let’s give it a try:

We set up the apriori() command to use a support of 0.005 (half a percent)
and confidence of 0.5 (50 percent) as the minimums. These values are
confirmed in the first few lines of output. Some other confirmations, such
as the value of minval and smax are not relevant to us right now—they have
sensible defaults provided by the apriori() implementation. The minlen and
maxlen parameters also have sensible defaults: These refer to the minimum
and maximum length of item set that will be considered in generating rules.



Obviously you can’t generate a rule unless you have at least one item in an
item set, and setting maxlen to 10 ensures that we will not have any rules
that contain more than 10 items. If you recall from earlier in the chapter, the
average cart only has 4.4 items, so we are not likely to produce many rules
involving more than 10 items.
In fact, a little later in the apriori() output above, we see that the apriori()
algorithm only had to examine subsets of size one, two three, and four.
Apparently, no rule in this output contains more than four items. At the very
end of the output we see that 120 rules were generated. Later on we will
examine ways of making sense out of a large number of rules, but for now
let’s agree that 120 is too many rules to examine. Let’s move our support to
0.01 (1 percent) and rerun apriori(). This time we will store the resulting
rules in a data structure called ruleset:

> ruleset <- apriori(Groceries, parameter =
+   list(support = 0.01,confidence = 0.5))

If you examine the output from this command, you should find that we have
slimmed down to 15 rules, quite a manageable number to examine one by
one. We can get a preliminary look at the rules using the summary function,
like this:



Looking through this output, we can see that there are 15 rules in total. The
line starting with “rule length distribution” shows that all 15 of the rules
have exactly three elements (counting both the LHS and the RHS). Then,
under summary of quality measures, we have an overview of the
distributions of support, confidence, and a new parameter called lift.
Researchers have done a lot of work trying to come up with ways of
measuring how interesting a rule is. A more interesting rule could be a more
useful rule because it is more novel or unexpected. Lift is one such
measure. Without getting into the math, lift takes into account the support
for a rule, but also gives more weight to rules where the LHS and/or the
RHS occurs less frequently. In other words, lift favors situations where LHS
and RHS are not abundant but where the relatively few occurrences always
happen together. The larger the value of lift, the more interesting the rule
may be.



Now we are ready to take a closer look at the rules we generated. The
inspect() command gives us the detailed contents of the dta object generated
by apriori():



You can see that each of the 15 rules shows the LHS, the RHS, the support,
the confidence, and the lift. Rules 7 and 8 have the highest level of lift: the



fruits and vegetables involved in these two rules have a relatively low
frequency of occurrence, but their support and confidence are both
relatively high. Contrast these two rules with Rule 1, which also has high
confidence but low support. The reason for this contrast is that milk is a
frequently occurring item, so there is not much novelty to that rule. On the
other hand, the combination of fruits, root vegetables, and other vegetables
suggests a need to find out more about customers whose carts contain only
vegetarian or vegan items.
Now it is possible that we have set our parameters for confidence and
support too stringently, and as a result we have missed some truly novel
combinations that might lead us to better insights. We can use a data
visualization package to help explore this possibility. The R package called
arulesViz has methods of visualizing the rule sets generated by apriori() that
can help us examine a larger set of rules. First, install and library the
arulesViz package:

> install.packages(“arulesViz”)
> library(arulesViz)

These commands will give the usual raft of status and progress messages.
When you run the second command you might find that three or four data
objects are masked. As before, these warnings generally will not
compromise the operation of the package.
Now let’s return to our apriori() command, but we will be much more
lenient this time in our minimum support and confidence parameters:

> ruleset <- apriori(Groceries,
+   parameter=list(support=0.005, confidence=0.35))

We brought support back to 0.005, and confidence down to 35%. When you
run this command, you should find that you now generate 357 rules. That is
way too many rules to examine manually, so let’s use the arulesViz package
to see what we have. We will use the plot() command that we have also
used earlier in the book. You might ask yourself why we needed to library
the arulesViz package if we are simply going to use an old command. The
answer to this conundrum is that arulesViz has put some extra plumbing
into place so that when the plot() command runs on a data object of type
rules (as generated by apriori) it will use some of the code that is built into
arulesViz to do the work. So by installing arulesViz we have put some



custom visualization code in place that can be used by the generic plot()
command. The command is very simple:

> plot(ruleset)
Figure 17.6 contains the result:
Figure 17.6

Even though we see a two-dimensional plot, we actually have three
variables represented here. Support is on the X-axis and confidence is on
the Y-axis. All else being equal, we would like to have rules that have high
support and high confidence. We know, however, that lift serves as a
measure of interestingness, and we are also interested in the rules with the
highest lift. On this plot, the lift is shown by the darkness of a dot that
appears on the plot. The darker the dot, the closer the lift of that rule is to
4.0, which appears to be the highest lift value among these 357 rules.
The other thing we can see from this plot is that although the support of
rules ranges from somewhere below 1% all the way up above 7%, all of the
rules with high lift seem to have support below 1%. On the other hand,



there are rules with high lift and high confidence, which sounds quite
positive.
Based on this evidence, let’s focus on a smaller set of rules that have only
the very highest levels of lift. The following command makes a subset of
the larger set of rules by choosing only those rules that have lift higher than
3.5:

> goodrules <- ruleset[quality(ruleset)$lift > 3.5]
Note that the use of the square brackets with our data structure ruleset
allows us to index only those elements of the data object that meet our
criteria. In this case, we use the expression quality(ruleset)$lift to tap into
the lift parameter for each rule. The inequality test > 3.5 gives us just those
rules with the highest lift. When you run this line of code you should find
that goodrules contains just nine rules. Let’s inspect those nine rules:



When you look over these rules, it seems evident that shoppers are
purchasing particular combinations of items that go together in recipes. The
first three rules really seem like soup! Rules 4 and 5 seem like a fruit platter
with dip. The other four rules might also connect to a recipe, although it is
not quite as obvious what.
The key takeaway point here is that using a good visualization tool to
examine the results of a data mining activity can enhance the process of
sorting through the evidence and making sense of it. If we were to present
these results to a store manager (and we would certainly do a little more
digging before formulating our final conclusions) we might recommend that
recipes could be published along with coupons and popular recipes, such as
for homemade soup, might want to have all of the ingredients group
together in the store along with signs saying, “Mmmm, homemade soup!”

Chapter Challenge
The arules package contains other data sets, such as the Epub
data set with 3,975 transactions from the electronic publication
platform of the Vienna University of Economics. Load up that
data set, generate some rules, visualize the rules, and choose
some interesting ones for further discussion.

Sources
http://en.wikipedia.org/wiki/Association_rule_learning
http://jmlr.csail.mit.edu/papers/volume12/hahsler11a/hahsler11a.
pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-
2_Williams.pdf
http://www.r-bloggers.com/examples-and-resources-on-
association-rule-mining-with-r/
http://rattle.togaware.com
http://www.statsoft.com/textbook/association-rules/
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18 What’s Your Vector, Victor?
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Learning Objectives
Explain the difference between supervised and unsupervised
learning.
Use the data mining technique known as a support vector
machine (SVM).
Create appropriate training and test data set environments.
Develop SVM R code using the kernlab package.

Supervised and Unsupervised Learning
Data mining techniques fall into two large categories: supervised learning
techniques and unsupervised learning techniques. The association rules
mining example we examined in the previous chapter was an unsupervised
learning technique. This means that there was no particular criterion that we
were trying to predict, but rather, we were just looking for patterns that
would emerge from the data naturally. In this chapter, we will examine a
supervised learning technique called a support vector machine (SVM). The



reason SVMs are considered a supervised learning technique is that we train
the algorithm on an initial set of data (the supervised phase) and then we
test it out on a brand-new set of data. If the training we accomplished
worked well, then the algorithm should be able to predict the right outcome
most of the time in the test data.
Take the weather as a simple example. Some days are cloudy, some are
sunny. The barometer rises some days and falls others. The wind might be
strong or weak, and it might come from various directions. If we collect
data across several days and use those data to train a machine learning
algorithm, the algorithm might find that cloudy days with a falling
barometer and the wind from the east signal that it is likely to rain. Next, we
can collect more data on some other days and see how well our algorithm
does at predicting rain on those days. The algorithm will make mistakes.
The percentage of mistakes is the error rate, and we would like the error
rate to be as low as possible.
This is the basic strategy of supervised machine learning: Have a substantial
number of training cases that the algorithm can use to discover and mimic
the underlying pattern, and then use the results of that process on a test data
set in order to find out how well the algorithm and parameters perform in a
cross-validation. Cross-validation, in this instance, refers to the process of
verifying that the trained algorithm can carry out is prediction or
classification task accurately on novel data.
Supervised Learning via Support Vector Machines
In this chapter, we will develop an SVM to classify e-mails into spam or
nonspam. Hence, the SVM needs to segregate the data into two classes
(spam and nonspam). But how does SVM best segregate the two classes
within the data?
SVM tries to create a hyperplane to divide the data. If we keep the
discussion to a two-dimensional piece of paper, we can think of the
hyperplane as a line dividing the two categories of data. The goal is to
choose a hyperplane (the line in two dimensions) with the greatest possible
margin between the hyperplane and any point within the training set, giving
a greater chance of new data being classified correctly. In Figure 18.1, you
can think of the light blue dots as being spam and the dark blue dots as
being nonspam.



However, this can get tricky if the data are not this cleanly divided; most
data sets are not this clean. Figure 18.2 shows an even more complicated
challenges, but you should be aware that real data sets are often even
messier than this.
So, how does an SVM solve this challenge? An SVM maps a low-
dimensional problem into a higher-dimensional space with the goal of being
able to describe geometric boundaries between different regions. The input
data (the independent variables) from a given case are processed through a
mapping algorithm called a kernel (the kernel is simply a formula that is run
on each case’s vector of input data), and the resulting kernel output
determines the position of that case in multidimensional space.
Figure 18.1

A simple mapping example can illustrate how this works. We can take a
messy two-dimensional set of dots and try to map them to a third
dimension, making it much easier to separate the two cases. You can see
how this might be done in Figure 18.3.
Another way to think about it is to imagine looking at a photograph of a
snowcapped mountain photographed from high above the earth, such that
the mountain looks like a small, white circle completely surrounded by a
region of green trees. Using a pair of scissors, there is no way of cutting the
photo on a straight line so that all of the white snow is on one side of the cut
and all the green trees are on the other. In other words, there is no simple
linear separation function that could correctly separate or classify the white
and green points given their two-dimensional positions on the photograph.



Next, instead of a piece of paper, think about a realistic three-dimensional
clay model of the mountain. Now all the white points occupy a cone at the
peak of the mountain and all of the green points lie at the base of the
mountain. Imagine inserting a sheet of cardboard through the clay model in
a way that divides the snowcapped peak from the green-tree-covered base.
It is much easier to do now because the white points are sticking up into the
high altitude and the green points are all at a lower altitude on the base of
the mountain.
Figure 18.2

Figure 18.3



The position of that piece of cardboard is the planar separation function that
divides white points from green points. An SVM analysis of this scenario
would take the original two-dimensional point data and search for a
projection into three dimensions that would maximize the spacing between
green points and white points. The result of the analysis would be a
mathematical description of the position and orientation of the cardboard
plane. Given inputs describing a novel data point, the SVM could then map
the data into the higher dimensional space and then report whether the point
was above the cardboard (a white point) or below the cardboard (a green
point). The so-called support vectors contain the coefficients that map the
input data for each case into the high-dimensional space.
Support Vector Machines in R
To get started with SVMs, we can load one of the R packages that supports
this technique. We will use the kernlab package. Use the commands below:

> install.packages(“kernlab”)
> library(kernlab)

Remember to use the double quotes in the first command, but not in the
second command. The data set that we want to use is built into this
package. The data come from a study of spam e-mails received by
employees at the Hewlett-Packard company. Load the data with the
following command:

> data(spam)
This command does not produce any output. We can now inspect the spam
data set with the str() command:



Some of the lines of output have been dropped from the material above.
You can also use the dim() function to get a quick overview of the data
structure:

> dim(spam)
[1] 4601 58

The dim() function shows the dimensions of the data structure. The output
of this dim() function shows that the spam data structure has 4,601 rows
and 58 columns. If you inspect a few of the column names that emerged
from the str() command, you will see that each e-mail is coded with respect
to its contents. There is lots of information available about this data set
here: http://archive.ics.uci.edu/ml/datasets/Spambase
For example, just before the word “type” at the end of the output of the str()
command on the previous page, we see a variable called capitalTotal. This
is the total number of capital letters in the whole e-mail. Right after that is
the criterion variable, type, that indicates whether an e-mail was classified
as spam by human experts. Let’s explore this variable some more:

http://archive.ics.uci.edu/ml/datasets/Spambase


> table(spam$type)
nonspam spam
2788 1813

We use the table function because type is a factor rather than a numeric
variable. The output shows us that there are 2,788 messages that were
classified by human experts as nonspam, and 1,813 messages that were
classified as spam. What a great data set!
To make the analysis work we need to divide the data set into a training set
and a test set. There is no universal way to do this, but as a rule of thumb
you can use two thirds of the data set to train and the remainder to test.
Let’s first generate a randomized index that will let us choose cases for our
training and test sets. In the following command, we create a new list/vector
variable that samples at random from a list of numbers ranging from 1 to
the final element index of the spam data (4,601).

The output of the summary() and length() commands above show that we
have successfully created a list of indices ranging from 1 to 4,601 and that
the total length of our index list is the same as the number of rows in the
spam data set: 4,601. We can confirm that the indices are randomized by
looking at the first few cases:

> head(randIndex)
[1] 2073 769 4565 955 3541 3357

Since this is a random set of numbers, based on the sample function, it is
possible that you might get different numbers in your randIndex. Of course,
your numbers will still be random; they just might be in a different order
than what we have shown in our code. It is important to randomize your
selection of cases for the training and test sets in order to ensure that there is
no systematic bias in the selection of cases. We have no way of knowing
how the original data set was sorted (if at all)—in case it was sorted on



some variable of interest, we do not just want to take the first two thirds of
the cases as the training set.
Next, let’s calculate the cut point that would divide the spam data set into a
two-thirds training set and a one-third test set:

> cutPoint2_3 <- floor(2 * dim(spam)[1]/3)
> cutPoint2_3
[1] 3067

The first command in this group calculates the two-thirds cut point based on
the number of rows in spam (the expression dim(spam)[1] gives the number
of rows in the spam data set). The second command reveals that that cut
point is 3,067 rows into the data set, which seems very sensible given that
there are 4,601 rows in total. Note that the floor() function chops off any
decimal part of the calculation. We want to get rid of any decimal because
an index variable needs to be an integer.
Now we are ready to generate our test and training sets from the original
spam data set. First we will build our training set from the first 3,067 rows:

> trainData <- spam[randIndex[1:cutPoint2_3],]
We make the new data set, called trainData, using the randomized set of
indices that we created in the randIndex list, but only using the first 3,067
elements of randIndex (The inner expression in square brackets,
1:cutPoint2_3, does the job of selecting the first 3,067 elements. From here
you should be able to imagine the command for creating the test set:

> testData <-
+   spam[randIndex[(cutPoint2_3+1):dim(spam)[1]],]

The inner expression now selects the rows from 3,068 all the way up to
4,601 for a total of 1,534 rows. So now we have two separate data sets,
representing a two-thirds training and one-third test breakdown of the
original data. We are now in good shape to train our support vector model.
The following command generates a model based on the training data set:



Let’s examine this command in some detail. The first argument, type ~.,
specifies the model we want to test. Using the word “type” in this
expression means that we want to have the type variable (i.e., whether the
message is spam or nonspam) as the outcome variable that our model
predicts. The tilde character (~) in an R expression simply separates the
left-hand side of the expression from the right-hand side. Finally, the dot
character (.) is a shorthand that tells R to use all of the other variables in the
dataframe to try to predict type.
The data parameter lets us specify which dataframe to use in the analysis. In
this case, we have specified that the procedure should use the trainData
training set that we developed.
The next parameter is an interesting one: kernel=“rbfdot”. You will
remember from the earlier discussion that the kernel is the customizable
part of the SVM algorithm that lets us project the low-dimensional problem
into higher-dimensional space. In this case, the rbfdot designation refers to
the radial basis function. One simple way of thinking about the radial basis
function is this: Think of a point on a regular X,Y coordinate system: The
distance from the origin to the point is like a radius of a circle. The dot in
the name refers to the mathematical idea of a dot product, which is a way of
multiplying vectors together to come up with a single number such as a
distance value. In simplified terms, the radial basis function kernel takes the
set of inputs from each row in a data set and calculates a distance value
based on the combination of the many variables in the row. The weighting
of the different variables in the row is adjusted by the algorithm in order to
get the maximum separation of distance between the spam cases and the
nonspam cases.
The kpar argument refers to a variety of parameters that can be used to
control the operation of the radial basis function kernel. In this case, we are
depending on the goodwill of the designers of this algorithm by specifying
automatic. The designers came up with some heuristics (guesses) to
establish the appropriate parameters without user intervention.
The C argument refers to the so-called cost of constraints. Remember back
to our example of the white top on the green mountain? When we put the
piece of cardboard (the planar separation function) through the mountain,
what if we happen to get one green point on the white side or one white
point on the green side? This is a kind of mistake that influences how the



algorithm places the piece of cardboard. We can force these mistakes to be
more or less costly and thus to have more influence on the position of our
piece of cardboard and the margin of separation that it defines. We can get a
large margin of separation—but possibly with a few mistakes—by
specifying a small value of C. If we specify a large value of C we might get
fewer mistakes but only at the cost of having the cardboard cut a very close
margin between the green and white points: the cardboard might get stuck
into the mountain at a very weird angle just to make sure that all of the
green points and white points are separated. On the other hand, if we have a
low value of C we will get a generalizable model, but one that makes more
classification mistakes.
In the next argument, we have specified cross=3. Cross refers to the cross-
validation model that the algorithm uses. In this case, our choice of the final
parameter, prob.model=TRUE, dictates that we use a so-called threefold
cross-validation in order to generate the probabilities associated with
whether a message is or isn’t a spam message. Cross- validation is
important for avoiding the problem of overfitting. In theory, many of the
algorithms used in data mining can be pushed to the point where they
essentially memorize the input data and can perfectly replicate the outcome
data in the training set. The only problem with this is that the model based
on the memorization of the training data will almost never generalize to
other data sets. In effect, if we push the algorithm too hard, it will become
too specialized to the training data and we won’t be able to use it anywhere
else. By using k-fold (in this case threefold) cross-validation, we can rein in
the fitting function so that it does not work so hard and so that it does create
a model that is more likely to generalize to other data.
Let’s have a look at what our output structure contains:



Most of this is technical detail that will not necessarily affect how we use
the SVM output, but a few things are worth pointing out. First, the sigma
parameter mentioned was estimated for us by the algorithm because we
used the automatic option. Thank goodness for that, because it would have
taken a lot of experimentation to choose a reasonable value without the help
of the algorithm. Next, note the large number of support vectors. These are
the lists of weights that help to project the variables in each row into a
higher-dimensional space. The training error at about 2.7% is quite low.
Naturally, the cross-validation error is higher, because a set of parameters
never performs as well on subsequent data sets as it does with the original
training set. Even so, a 7.6% cross-validation error rate is pretty good for a
variety of prediction purposes.
We can take a closer look at these support vectors with the following
command:

> hist(alpha(svmOutput)[[1]])
The alpha() accessor reveals the values of the support vectors. Note that
these are stored in a nested list, hence the need for the [[1]] expression to
access the first list in the list of lists. Because the particular data set we are
using only has two classes (spam or nonspam), we need only one set of
support vectors. If the type criterion variable had more than two levels (e.g.,
spam, not sure, and nonspam), we would need additional support vectors to



be able to classify the cases into more than two groups. The histogram in
Figure 18.4 shows the range of the support vectors from 0 to 5.
The maximum value of the support vector is equal to the cost parameter that
we discussed earlier. We can see that about half of the support vectors are at
this maximum value while the rest cluster around zero. Those support
vectors at the maximum represent the most difficult cases to classify. With
respect to our mountain metaphor, these are the white points that are below
the piece of cardboard and the green points that are above it.
Figure 18.4

If we increase the cost parameter we can get fewer of these problem points
but only at the cost of increasing our cross-validation error:



In the first command, the C=50 is what we changed from the earlier
command. The output here shows that our training error went way down, to
0.88% but that our cross-validation error went up from 7.6% in our earlier
model to 8.5% in this model. We can again get a histogram (see Figure
18.5) of the support vectors to show what has happened, and this time, we
improve the title and axis labels.

> hist(alpha(svmOutput)[[1]],
+ main=“Support Vector Histogram with C=50”,
+ xlab=“Support Vector Values”)

Figure 18.5



Now there are only about 100 cases where the support vector is at the
maxed-out value (in this case 50, because we set C = 50 in the ksvm()
command). Again, these are the hard cases that the model could not get to
be on the right side of the cardboard (or that were precisely on the
cardboard). Meanwhile, the many cases with the support vector value near
zero represent the combinations of parameters that make a case lie very far
from the piece of cardboard. These cases were so easy to classify that they
really made no contribution to positioning the hyperplane that separates the
spam cases from the nonspam cases.
We can poke our way into this a little more deeply by looking at a couple of
instructive cases. First, let’s find the index numbers of a few of the support
vectors that were near zero:

> |alphaindex(svmOutput)[[1]][alpha(svmOutput)[[1]] <
+   0.05]
[1] 90 98 289 497 634 745 1055 1479 1530 1544
1646 1830 1948 2520 2754



This monster of a command is not as bad as it looks. We are tapping into a
new part of the svmOutput object, this time using the alphaindex() accessor
function. Remember that we have 850 support vectors in this output. Now
imagine two lists of 850 right next to each other: The first is the list of
support vectors themselves; we get at that list with the alpha() accessor
function. The second list, lined right up next to the first list, is a set of
indices into the original training data set, trainData. The left-hand part of
the expression in the command above lets us access these indices. The
right-hand part of the expression, where it says alpha(svmOutput)[[1]]
<0.05, is a conditional expression that lets us pick from the index list just
those cases with a very small support vector value. You can see the output
above, just underneath the command: about 15 indices were returned. Just
pick off the first one, 90, and take a look at the individual case it refers to:

The command requested row 90 from the trainData training set. A few of
the lines of the output were left off for ease of reading and almost all of the
variables thus left out were zero. Note the very last two lines of the output,
where this record is identified as a nonspam e-mail. So this was a very easy
case to classify because it has virtually none of the markers that a spam e-
mail usually has (e.g., as shown earlier, no mention of Internet, order, or
mail). You can contrast this case with one of the hard cases by running this
command:

> alphaindex(svmOutput)[[1]][alpha(svmOutput)[[1]] ==
+  50]



You will get a list of the 92 indices of cases where the support vector was
maxed out to the level of the cost function (remember C = 50 from the latest
run of the ksvm() command). Pick any of those cases and display it, like
this:

> trainData[11,]
This particular record did not have many suspicious keywords, but it did
have long strings of capital letters that made it hard to classify (it was a
nonspam case, by the way). You can check out a few of them to see if you
can spot why each case might have been difficult for the classifier to place.
The real acid test for our support vector model, however, will be to use the
support vectors we generated through this training process to predict the
outcomes in a novel data set. Fortunately, because we prepared carefully,
we have the testData training set ready to go. The following commands will
give us some output known as a confusion matrix:

The first command in the confusion matrix uses our model output from
before, namely, svmOutput, as the parameters for prediction. It uses the
testData, which the support vectors have never seen before, to generate
predictions, and it requests votes from the prediction process. We could also
look at probabilities and other types of model output, but for a simple
analysis of whether the ksvm() function is generating good predictions,
votes will make our lives easier.
The output from the predict() command is a two-dimensional list. You
should use the str() command to examine its structure. Basically there are
two lists of vote values side by side. Each list is 1,534 elements long,
corresponding to the 1,534 cases in our testData object. The left-hand list
has one (1) for a nonspam vote and zero (0) for a spam vote. Because this is



a two-class problem, the other list has just the opposite. We can use either
one because they are mirror images of each other.
In the second command above, we make a little dataframe, called
compTable, with two variables in it: The first variable is the 58th column in
the test data, which is the last column containing the type variable (a factor
indicating spam or nonspam). Remember that this type variable is the
human judgments from the original data set, so it is our ground truth. The
second variable is the first column in our votes data structure (svmPred), so
it contains ones for nonspam predictions and zeros for spam predictions.
Finally, applying the table() command to our new dataframe (compTable)
gives us the confusion matrix as output. Along the main diagonal, we see
the erroneous classifications: 38 cases that were nonspam but were
classified as spam by the support vector matrix, and 68 cases that were
spam but were classified as nonspam by the support vector matrix. On the
counter-diagonal, we see 854 cases that were correctly classified as
nonspam and 574 cases that were correctly classified as spam.
Overall, it looks like we did a pretty good job. There are a bunch of
different ways of calculating the accuracy of the prediction, depending on
what you are most interested in. The simplest way is to sum the 68 + 38 =
106 error cases and divide by the 1,534 total cases for a total error rate of
about 6.9%. Interestingly, that is a tad better than the 8.5% error rate we got
from the k-fold cross-validation in the run of ksvm() that created the model
we are testing. Keep in mind, though, that we might be more interested in
certain kinds of error than others. For example, consider which is worse: an
e-mail that gets mistakenly quarantined because it is not really spam or a
spam e-mail that gets through to someone’s inbox? It really depends on the
situation, but you can see that you might want to give more consideration to
either the 68 misclassification errors or the other set of 38 misclassification
errors.
This completes our focus on modeling. Hopefully, at this point, you
understand the difference between the models that we have been able to
create in R (using lm, apriori, and ksvm). There are many other models that
might be useful, such as clustering observations in a data set into groups
based on the data within the dataframe. These other models are also
available within R. Alas, the exploration of these other models is beyond
our scope—but feel free to explore!



Chapter Challenge
Look up the term confusion matrix and then follow up on some
other terms such as Type I error, Type II error, sensitivity, and
specificity. Think about how the SVM model could be modified
to do better at either sensitivity or specificity.
For an additional challenge, try using another data set with the
kernlab svm technology. Specifically, there is a data set called
promotergene that is built into the kernlab package.
Promotergene is a data set of E. coli promoter gene sequences
(DNA) with 106 observations and 58 variables that was
originally made available at the UCI Machine Learning
repository. Your goal is to explore the promotergene data set and
to try to be able to predict promoters (which is a column in the
data set). In case you were wondering, promoters have a region
where a protein makes contact with the helical DNA sequence
and that contact region spatially aligns.

Sources
http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/svmb
asic_notes.pdf
http://cran.r-project.org/web/packages/kernlab/kernlab.pdf
http://en.wikipedia.org/wiki/Confusion_matrix
http://stackoverflow.com/questions/9480605/what-is-the-
relation-between-the-number-of-support-vectors-and-training-
data-and
http://www.louisaslett.com/Courses/Data_Mining/ST4003-
Lab7-Introduction_to_Support_Vector_Machines.pdf
http://www.jstatsoft.org/v11/i09/paper

R Functions Used in This Chapter
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Learning Objectives
Build an interactive R application.
Deploy an interactive R application on the web.
Create a Shiny web app within RStudio.

Sometimes, when we use R to develop code, it is helpful to actually create
an application and have that application be interactive. Happily, there is a
very easy way to create interactive web applications in R. Let’s get started!
Shiny is a trademark of RStudio, Inc.
Creating Web Applications in R
The first step, within RStudio, is to create a new file, but rather than an R
source file, we want to click the File menu, then New File, then Shiny Web
App . . . .” When you see this dialog window, press the Create button.



Figure 19.1

After creating a new app (select single file as the application type), an R file
(app.r) will be created. This code will be visible as a tab in your R source
RStudio window (i.e., in the upper-left-hand part of RStudio). Wow, a lot of
code was created! But let’s explore the code; it’s easy to understand. There
are three main components of the code. First is the user interface (ui), then
the code that does the R calculations (the server), and, finally, the code that
tells R/Shiny our ui and server variables.





As we can see, first there is the code that creates the user interface (this is
the code that lets a user adjust the application, such as selecting an
attribute). That code defines the object ui. Then there is the code that
generates the server code (think of this as the code that performs the
functions needed to display the appropriate information on a web page).
This is defined in the server object. Finally, there is one line that actually
runs the code, the shinyApp, which is the last line in the file. It is important
(not now, but when we go to create a web-based application) for this
shinyApp function to be the last line in the file.
We can name ui any variable name we want. We can also name server any
name we want. The shinyApp lets R know the names of our two key
components. So if we changed ui to myUI, the shinyApp would be changed
to

shinyApp(ui = myUI, server = server)
Note that in RStudio, there no longer is the Run button (to run the code).
Instead, there is the Run App button. Since the code has been pre-generated,
you can press the Run App button and the code will run.
Figure 19.2

Since we are now running applications, RStudio can launch the app in a
new window, a window in your browser or in the viewer window (the
lower-right window in RStudio). You can choose to have the app launch in
one of these by clicking on the icon to the right of the Run App button.



RStudio will give you a pulldown menu to select how you want to display
the app.
With our application running (e.g., in your browser or in your viewer
window), we can change the number of bins used to create the histogram,
and then the picture adjusts. One important note is that while this can be run
in your web browser, it is not yet a web application (we will get to that
later). For now, it is an interactive application, running locally on your
machine.
Figure 19.3

A minor issue occurs sometimes: After closing the application window
(e.g., the window tab in a web browser where the R code was running),
RStudio might not terminate the application. So if you hit enter in the
console of RStudio, you might not see the >. If this is the case, then it is
likely the case that R is still running. If this happens, all you need to do his
press the Stop button, in the middle of the RStudio screen (in the upper-
right part of the console window). This button is visible only when R is
running. So if you see the Stop button and are not actively running your R
code, then it makes sense to hit the Stop button (which will cause the Stop
button to go away).
Figure 19.4



OK. Now that we got the code to run, and then stop, let’s explore the code
in more detail. First, for the ui, we can see there are two areas defined. First
there is the slider area that defines the number of bins to be used, and next
is the main panel area where we will plot (draw) the histogram.
The server function takes the variable input$bins, which supplies the
information from the slider, and uses that value to define the number of bins
in the histogram. The input$bins is defined by the fact that the number is
from input (so that explains “input” in the variable), but the “bins” part of
the variable is defined in the ui. Take a look at the slider input, where bins
are defined as the output of the slider.
We can also see that the plotOutput in the ui uses distPlot, and that variable
is defined in the server code. So distPlot is a variable that is used as the
output of the renderPlot function, and shows the actual histogram.
Note that we can simplify the code to make it easier to follow:





To show these variables, we can change the code somewhat to show our
important variables. We can change bins to myBins and distPlot to myPlot.
You can see where myPlot and myBins are used. This provides a template
on how to create Shiny apps.



Deploying the Application



Although this code works within RStudio, and can be run in a web browser,
it is still not a web application. We still have to deploy our application so it
can be run on the web. There are many ways to deploy the app, and one of
the easiest is to use the hosting service available at
http://www.shinyapps.io/, which is free for testing small apps. What makes
shinyapps.io so nice is that it is integrated with RStudio. In fact, we have
already done almost all the work required to deploy a Shiny app.
To get our interactive web page to work, we first need to create an account
at shiny apps.io, and then follow the instructions. We first need to install
rsconnect (via the normal install.packages command in the RStudio
console).

> install.packages(“rsconnect”)
> library(rsconnect)

Then, we need to use the command setAccountInfo, as explained (on the
shinyapps.io website), after getting a shinyapps account. Note that the
parameters to this command are specific to your account. So make sure to
appropriately copy the code to R and then run the line of code in the R
console. You might have to Show secret so that the code is copied correctly.

> setAccountInfo(name=‘xxx’,
+ token=‘yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy’,
+ secret=zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz’)

Remember, the xxx, yyy . . . yyy, and zzz . . . zzz are placeholders for
values you get on the shinyapps.io website after we have logged into the
system. This process is explained in a small shinyapps tutorial available at
http://shiny.rstudio.com/articles/shinyapps.html
Once these two steps are completed, we can publish the application (instead
of Run App) from within RStudio. Publish Application is the icon next to
Run App and is circled in Figure 19.5.
When we use Publish Application, RStudio will create a new tab in the
lower-left window. Now, in addition to the console, there will be a Deploy
tab. After publishing, you should see something similar to the following (in
the deploy window):

Preparing to deploy application . . . DONE
Uploading bundle for application: 146349 . . . DONE

Figure 19.5

http://www.shinyapps.io/
http://shiny.rstudio.com/articles/shinyapps.html


Deploying bundle: 655321 for application: 146349 . . .
Waiting for task: 317406782
building: Parsing manifest
building: Installing packages
building: Installing files
building: Pushing image: 645493
deploying: Starting instances
rollforward: Activating new instances
success: Stopping old instances
Application successfully deployed to https://xxx.shinyapps.io/test/
Deployment completed: https://xxx.shinyapps.io/test/

As you can see, we just deployed a public test of a simple R application.
Note that when you deploy, the xxx will be replaced with your account.
That’s it! We now have a real web-based application.
Of course, there are many ways to configure/define input within Shiny—a
slider is just one possibility. Our small application was just a way to test
how to deploy an application.
Let’s build a slightly more-advanced application, using the map
visualizations that we previously created. Within this new application, we
will use a different input method to build an application that will allow the
user to define how to color-code our map. For this input, we will have a
predefined list of possible choices, so a choice menu makes the most sense.

https://xxx.shinyapps.io/test/
https://xxx.shinyapps.io/test/


To do this, we need to create a new Shiny app (from the File, New File,
menu in RStudio).
Once we have this new application, the ui code is similar to our initial
example, but rather than a sliderInput input, we have a selectInput (which
will create a choice menu). When we create a choice menu, for each menu
choice we define two items. The first item is what is shown to the user and
can be any text string. The second item is the variable name we want to use
in our R code. In this example, the choice menu is letting the user select a
column in our dataframe, so the different choices have the appropriate
column name as the second item for each choice selection.
The code to define the server function is somewhat more complicated but is
very similar to the code that we have previously created to display the map.
In fact, the only real difference is the use of input$variable to define the
column we want to color the map: Where previously we had coded that to a
specific column, now the code is more general, based on what the user
selects. You may notice that we also use the exact same readCensus
function. So, while this is a lot of code, almost all of it should look familiar.



If you encounter an error when trying to run the application, Shiny app
might generate a Disconnected from Server error (and then not show the
web page). When this happens, or if you are just curious about how the app
is doing, one trick is to look at the output log by typing the showLogs
command within the R console:

> rsconnect::showLogs()
You can see the double colons (::) between the rsconnect and the showLogs.
This full line makes sure we are using the rsconnect’s showLogs function.
Since there might be other packages that use a showLogs function,
explicitly telling R we want to use the rsconnect function makes sure we get
the function we wanted.
To recap, in this chapter we explored how to create web-based applications,
written in R, that anyone can see with a web browser. These applications
allow interactive R visualizations.

Chapter Challenge(s)
Try to create a scatter plot interactive application. In this
application, use the census data from earlier in the book, and let
the user determine the X-axis, the Y-axis, the color, and the size



based on what the user would like to see. To do this, you will
need multiple-choice menus, one for each selection the user
needs to make.

Sources
http://shiny.rstudio.com/articles/shinyapps.html
http://www.shinyapps.io/
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20 Big Data? Big Deal!
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Learning Objectives
Explain the characteristics of big data.
Explain the importance of big data in business and other sectors.
Demonstrate a distributed computing R application across a
cluster of computers (perhaps virtual machines running on one
computer).

On May 14, 2012, Informatica (a data integration software provider)
published an article with the title “Big Data Equals Big Business
Opportunity Say Global IT and Business Professionals,” and the subtitle,
“70 Percent of Organizations Now Considering, Planning or Running Big
Data Projects According to New Global Survey.” The technology news has
been full of similar articles for several years. Given the number of such
articles it is hard to resist the idea that big data represents some kind of



revolution that has turned the whole world of information and technology
topsy-turvy. But is this really true? Does big data change everything?
What Is Big Data?
In 2001, business analyst Doug Laney suggested that three characteristics
make big data different from what came before: volume, velocity, and
variety. Volume refers to the sheer amount of data. Velocity focuses on how
quickly data arrive as well as how quickly those data become stale. Finally,
Variety reflects the fact that there can be many different kinds of data.
Together, these three characteristics are often referred to as the three Vs
model of big data. Note, however, that even before the dawn of the
computer age we’ve had a variety of data, some of which arrives quite
quickly, and that can add up to quite a lot of total storage over time. Think,
for example, of the large variety and volume of data that have arrived
annually at the Library of Congress since the 1800s! So it is difficult to tell,
just based on someone saying that she has a high- volume, high-velocity,
and high-variety data problem, that big data is fundamentally a brand-new
thing.
With that said, there are certainly many changes afoot that make data
problems qualitatively different today from what they were a few years ago.
Let’s list a few things that are pretty accurate:

The decline in the price of sensors (like barcode readers) and other
technology over recent decades has made it cheaper and easier to
collect a lot more data. Similarly, the declining cost of storage has
made it practical to keep lots of data hanging around, regardless of its
quality or usefulness.
Many people’s attitudes about privacy seem to have accommodated the
use of Facebook and other platforms where we reveal lots of
information about ourselves.
Researchers have made significant advances in the machine learning
algorithms that form the basis of many data mining techniques.
When a data set gets to a certain size (into the range of thousands of
rows), conventional tests of statistical significance are meaningless,
because even the most tiny and trivial results (or effect sizes, as
statisticians call them) are statistically significant.



Keeping these points in mind, there are also a number of things that have
not changed throughout the years:

Garbage in, garbage out: The usefulness of data depends heavily on
how carefully and well they were collected. After data were collected,
the quality depends on how much attention was paid to suitable
preprocessing: data cleaning and data screening.
Bigger equals weirder: If you are looking for anomalies—rare events
that break the rules—then larger is better. Low-frequency events often
do not appear until data collection goes on for a long time and/or
encompasses a large enough group of instances to contain one of the
bizarre cases.
Linking adds potential: Stand-alone data sets are inherently limited by
whatever variables are available. But if those data can be linked to
some other data, new vistas can suddenly open up. No guarantees, but
the more you can connect records here to other records over there, the
more potential findings you have.

Items on both of the lists above are considered pretty commonplace and
uncontroversial. Taken together, however, they do shed some light on the
question of how important big data might be. We have had lots of historical
success using conventional statistics to examine modestly sized (i.e., 1,000
rows or fewer) data sets for statistical regularities. Everyone’s favorite basic
statistic, the Student’s t-test, is essential a test for differences in the central
tendency of two groups. If the data contain regularities such that one group
is notably different from another group, a t-test shows it to be so.
Big data does not help us with these kinds of tests. We don’t even need
1,000 records for many conventional statistical comparisons, and having 1
million or 100 million records won’t make our job any easier (it will just
take more computer memory and storage). Think about what you read
earlier in the book: We were able to start using a basic form of statistical
inference with a data set that contained a population with only 51 elements.
In fact, many of the most commonly used statistical techniques, like the
Student’s t-test, were designed specifically to work with very small
samples.
On the other hand, if we are looking for needles in haystacks, it makes
sense to look (as efficiently as possible) through the biggest possible
haystack we can find, because it is much more likely that a big haystack



will contain at least one needle and maybe more. Keeping in mind the
advances in machine learning that have occurred over recent years, we
begin to have an idea that good tools together with big data and interesting
questions about unusual patterns could indeed provide some powerful new
insights.
Let’s couple this optimism with three very important cautions. The first
caution is that the more complex our data are, the more difficult it will be to
ensure that the data are clean and suitable for the purpose we plan for them.
A dirty data set is worse in some ways than no data at all because we might
put a lot of time and effort into finding an insight and find nothing. Even
more problematic, we might put a lot of time and effort and find a result
that is simply wrong! Many analysts believe that cleaning data—getting it
ready for analysis, weeding out the anomalies, organizing the data into a
suitable configuration—actually takes up most of the time and effort of the
analysis process.
The second caution is that rare and unusual events or patterns are almost
always, by their nature, highly unpredictable. Even with the best data we
can imagine and plenty of variables, we will almost always have a lot of
trouble accurately enumerating all of the causes of an event. The data
mining tools might show us a pattern, and we might even be able to
replicate the pattern in some new data, but we might never be confident that
we have understood the pattern to the point where we believe we can
isolate, control, or understand the causes. Predicting the path of hurricanes
provides a great example here: Despite decades of advances in weather
instrumentation, forecasting, and number crunching, meteorologists still
have great difficulty predicting where a hurricane will make landfall or how
hard the winds will blow. The complexity and unpredictability of the forces
at work make the task exceedingly difficult.
The third caution is about linking data sets. The third point above suggests
that linkages could provide additional value. With every linkage to a new
data set, however, we also increase the complexity of the data and the
likelihood of dirty data and resulting spurious patterns. In addition,
although many companies seem less and less concerned about the idea, the
more we link data about living people (e.g., consumers, patients, voters,
etc.), the more likely we are to cause a catastrophic loss of privacy. Even if
you are not a big fan of the importance of privacy on principle, it is clear



that security and privacy failures have cost companies dearly in both money
and reputation. Today’s data innovations for valuable and acceptable
purposes might be tomorrow’s crimes and scams. The greater the amount of
linkage between data sets, the easier it is for those people with malevolent
intentions to violate privacy.
Putting this altogether, we can take a sensible position that high-quality
data, in abundance, together with tools used by intelligent analysts in a
secure environment, could provide worthwhile benefits in the commercial
sector, in education, in government, and in other areas. The focus of our
efforts as data scientists, however, should not be on achieving the largest
possible data sets, but rather on getting the right data and the right amount
of data for the purpose we intend. There is no special virtue in having a lot
of data if those data are unsuitable to the conclusions that we want to draw.
Likewise, simply getting data more quickly does not guarantee that what we
get will be highly relevant to our problems. Finally, although it is said that
variety is the spice of life, complexity is often a danger to reliability and
trustworthiness: the more complex the linkages among our data, the more
likely it is that problems could crop up in making use of those data or in
keeping them safe.
The Tools for Big Data
We can think of big data as the next step beyond remote databases—it
leverages distributed computing across a cluster of computers. This
combines the remote access to data that we previously demonstrated via
SQL with additional computational capabilities. As of this writing, one of
the most popular systems for large-scale distributed storage and computing
is Hadoop (named after the toy elephant of the young son of the developer).
Hadoop is not a single thing but is rather a combination of pieces of
software combined into a library. Hadoop is developed and maintained by
the same people who maintain the Apache open source web server. There
are about a dozen different parts of the Hadoop framework, but the Hadoop
distributed files system (HDFS) and Hadoop MapReduce framework are
two of the most important frameworks.
HDFS is easy to explain. Imagine your computer and several other
computers at your home or workplace. If we could get them all to work
together, we could call them a cluster and we could theoretically get more



use out of them by taking advantage of all of the storage and computing
power they have as a group. Running HDFS, we can treat this cluster of
computers as one big hard drive. If we have a really large file—too big to fit
on any one of the computers—HDFS can divide up the file and store its
different parts in different storage areas without us having to worry about
the details. With a proper configuration of computer hardware, such as an
IT department could supply, HDFS can provide an enormous amount of
throughput (i.e., a very fast capability for reading and writing data) as well
as redundancy and failure tolerance.
MapReduce is somewhat more complicated, but it follows the same logic of
trying to divide up work across multiple computers. The term
“MapReduce” is used because there are two big processes involved: map
and reduce. For the map operation, a big job is broken up into lots of
separate parts. For example, if we wanted to create a search index for all of
the files on a company’s intranet servers, we could break up the whole
indexing task into a bunch of separate jobs. Each job might take care of
indexing the files on one server.
In the end, though, we don’t want dozens or hundreds of different search
indices. We want one big one that covers all the files our company owns.
This is where the reduce operation comes in. As all of the individual
indexing jobs finish up, a reduce operation combines them into one big job.
This combining process works on the basis of a so-called key. In the search
indexing example, some of the small jobs might have found files that
contained the word fish. As each small job finishes, it mentioned whether or
not fish appeared in a document and perhaps how many times fish appeared.
The reduce operation uses fish as a key to match up the results from all of
the different jobs, thus creating an aggregated summary listing all of the
documents that contained fish. Later, if anyone searched on the word fish,
this list could be used to direct them to documents that contained the word.
In short, map takes a process that the user specifies and an indication of
which data it applies to, and divides the processing into as many separate
chunks as possible. As the results of each chunk become available, reduce
combines them and eventually creates and returns one aggregated result.
Founded in 2007, an organization called RevolutionAnalytics has
developed an R interface, or wrapper, for Hadoop that is called RHadoop.
This package is still a work in progress in the sense that it does not appear



in the standard CRAN package archive, not because there is anything
wrong with it, but rather because RevolutionAnalytics wants to continue to
develop it without having to provide stable versions for the R community.
There is good information available here:

https://github.com/RevolutionAnalytics/RHadoop/wiki
We will break open the first example presented in a tutorial authored by
Hugh Devlin just to provide further illustration of the use of MapReduce.
As with our MySQL example in Chapter 11, this is a rather trivial activity
that would not normally require the use of a large cluster of computers, but
it does show how MapReduce can be put to use.
The tutorial example first demonstrates how a repetitive operation is
accomplished in R without the use of MapReduce. In prior chapters we
have used tapply() function. The lapply() or list-apply is one of the
simplest. You provide an input vector of values and a function to apply to
each element, and the lapply() function does the heavy lifting. The example
in the RHadoop tutorial squares each integer from 1 to 10. This first
command fills a vector with the input data:

> small.ints <- 1:10
> small.ints
[1] 1 2 3 4 5 6 7 8 9 10

Next we can apply the squaring function (just using the ^ operator) to each
element of the list:

In the first command above, we have used lapply() to perform a function on
the input vector small.ints. We have defined the function as taking the value
x and returning the value x^2. The result is a list of 10 vectors (each with
just one element) containing the squares of the input values. Because this is

https://github.com/RevolutionAnalytics/RHadoop/wiki


such a small problem, R was able to accomplish it in a tiny fraction of a
second.
Explaining how to install and use Hadoop and RHadoop would take an
entire book, so our goal in this chapter is to give you a feel for Hadoop and
how you might use Hadoop within an R environment. Installing Hadoop,
and then RHadoop, is no simple task. In fact, that is our challenge at the end
of this chapter. Note that installing Hadoop must be done outside of R, in a
manner similar to how you would install a database that R might then use.
In addition, since RHadoop is not an official package, that software must
also be downloaded outside of R. Note that RHadoop actually consists of
several packages, with the three most important being rmr, rhdfs, and
rhbase. Rmr, actually the rmr2 package, provides the Hadoop MapReduce
functionality in R, rhdfs provides HDFS file management in R, and rhbase
provides HBase database management from within R. You can download
these packages from the RevolutionAnalytics repository. The
RevolutionAnalytics web page noted previously has details on the packages
and provides help on downloading and installing RHadoop.
After installing both Hadoop and RHadoop—which, again, is not an official
package, and therefore has to be installed manually—we can perform this
same operation with two commands:

> small.ints <- to.dfs(1:10)
> out <- mapreduce(input = small.ints, map =
+  function(k,v) keyval(v, v^2))

In the first command, we again create a list of integers from 1 to 10. But
rather than simply storing them in a vector, we are using the distributed file
system, or dfs, class that is provided by RHadoop. Note that in most cases
we would not need to create this ourselves because our large data set would
already exist on the HDFS. We would have connected to HDFS and
selected the necessary data much as we did earlier in this chapter with
dbConnect().
In the second command, we are doing essentially the same thing as we did
with lapply(). We provide the input data structure (which, again, is a dfs
class data object, a kind of pointer to the data stored by Hadoop in the
cluster). We also provide a map function, which is the process that we want
to apply to each element in our data set. Notice that the function takes two
arguments, k and v. The k refers to the key that we mentioned earlier in the



chapter. We actually don’t need the key in this example because we are not
supplying a reduce function. There is, in fact, no aggregation or combining
activity that needs to occur because our input list (the integers) and the
output list (the squares of those integers) are lists of the same size. If we
had needed to aggregate the results of the map function, say by creating a
mean or a sum, we would have had to provide a reduce function that would
do the job.
The keyval() function is characterized as a helper function in the tutorial. In
this case, it is clear that the first argument to keyval, v, is the integer to
which the process must be applied, and the second argument, v^2, is the
squaring function that is applied to each argument. The data returned by
mapreduce() is functionally equivalent to that returned by lapply(): In other
words, it is a list of the squares of the integers from 1 to 10.
The following is another, slightly more elaborate, example of using
RHadoop that generates the mean for a particular column in the iris data set,
which is another data set built into R. As you can see, the basic structure is
similar to the earlier example—the use of a map and then reduce function.



Obviously, there is no point in harnessing the power of a cluster of
computers to calculate something that could be done with a pencil and a
paper in a few seconds. If, however, the operation was more complex and
the list of input data had millions of elements, the use of lapply() would be
impractical because it would take your computer quite a long time to finish
the job. On the other hand, the second strategy of using mapreduce() could
run the job in a fraction of a second, given a sufficient supply of computers
and storage.
On a related note, Amazon, the giant online retailer, provides virtual
computer clusters that can be used for exactly this kind of work. Amazon’s
product is called the Elastic Compute Cloud, or EC2, and at this writing it is



possible to create a small cluster of Linux computers for as little as five
cents per hour.
To summarize this chapter, although there are many analytical problems
that require only a small amount of data, the wide availability of larger data
sets has added new challenges to data science. As a single user program
running on a local computer, R is well suited for work by a single analyst
on a data set that is small enough to fit into the computer’s memory. We can
retrieve these small data sets from individual files stored in human-readable
(e.g., CSV) or binary (e.g., XLS) formats.
To be able to tackle the larger data challenges, however, we need to be able
to connect R with remote computational resources. Hadoop, which provides
the potential for both massive storage and parallel computational power,
promises to make very large data sets available for processing and analysis
in R.
This chapter gave an overview of Hadoop, but we should consider some
other strategies for working with very large data sets. One simple technique
is to down-sample the data. For example, one might reduce the size of a
data set by a factor of 100 through randomly sampling 10,000 records from
a data set containing 1 million records. The smaller data set would be more
likely to fit into your computer’s memory, and in many scenarios there
would not be a meaningful impact on the quality of your analytical results.
(One key exception is the needle-in-the-haystack analysis described at the
top of the chapter; down-sampling can interfere with the analysis of unusual
events.)
Another strategy for working with very large data sets lies in getting a
bigger computer: R keeps its data in the computer’s main memory—the so-
called RAM (random access memory)—so getting a computer with a larger
memory means that more data can be stored. Although in theory a modern
64-bit computer can address 16 exabytes of memory (about 1 million
terabytes), the operating systems used in today’s computers generally create
much smaller limits. In fact, on a 64-bit Windows machine, R can address
no more than eight terabytes of data. Still, this is quite a large amount of
data, so more memory is a workable strategy for dealing with large data sets
in some cases.
A third option is to use one of the packages that R authors have developed
for addressing data on mass storage devices (e.g., a large hard drive) instead



of in memory. Hard disk drives are ridiculously cheap—a recent look
showed an eight-terabyte hard drive available for about $250—making it
easy to store a very large data set. Many functions in R, however, such as
mean() and sd(), assume that a data object is stored in memory. Packages
such as ffbase get around this problem. Two statisticians from Europe,
Edmin de Jonge and Jan Wijffels, created the ffbase package to simplify the
analysis of large data frames stored on a computer’s mass storage device.
Other options that are similar to ffbase include the bigmemory package and
the RevoScaleR product from Revolution Analytics.
Deciding which of these techniques to use can be tricky. Generally, for any
data set larger than 10 gigabytes, a parallel processing solution such as
Hadoop will work best. Data sets between 2 gigabytes and 10 gigabytes can
work with one of the hard drive solutions such as ffbase. Finally, for data
sets smaller than two gigabytes, upgrading a computer’s memory to
sufficient size to handle the data may provide the simplest approach.

Chapter Challenge
Hadoop is a software framework designed for use with Apache,
which is first and foremost a Linux server application. Yet there
are development versions of Hadoop available for Windows and
Mac as well. These are what are called single node instances—
that is, they use a single computer to simulate the existence of a
large cluster of computers. See if you can install the appropriate
version of Hadoop for your computer’s operating system.
As a bonus activity, if you are successful in installing Hadoop,
then get a copy of the RHadoop package from
RevolutionAnalytics and install that. If you are successful with
both, you should be able to run the MapReduce code presented
in this chapter.

Sources
http://aqua.nasa.gov/doc/pubs/Wx_Forecasting.pdf
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Data.gov
https://www.informatica.com/about-us/news/news-
releases/2012/05/20120514-big-data-equals-big-business-

http://aqua.nasa.gov/doc/pubs/Wx_Forecasting.pdf
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Data.gov
https://www.informatica.com/about-us/news/news-releases/2012/05/20120514-big-data-equals-big-business-opportunity-say-global-it-and-business-professionals.html#fbid=0md1UhhoUXd


opportunity-say-global-it-and-business-
professionals.html#fbid=0md1UhhoUXd
http://en.wikipedia.org/wiki/Mapreduce
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/t
utorial.md
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Size of visualizations, 139
Skills needed to do data science, 3–5
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Twitter, 193

Sorting dataframes, 57–58
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SQL, 124–128

for big data, 264
SQlite, 121
Standard deviation, 84–85
Statistics



historical perspective of, 81–82
normal distributions, 91–94
sampling a population and, 82–83
understanding descriptive, 83–85
using descriptive, 85–88
using histograms to understand a distribution in, 88–91

Steps in doing data science, 2–3
Stoll, Clifford, 9
Stop words, 182
Storage, data, 10–11, 111–112

accessing a database and, 120–124
accessing Excel data and, 114–120
accessing JSON data and, 128–136
comparing SQL and R for accessing data set and, 124–128
computer RAM and, 269
devices, 269
importing data using RStudio and, 112–114

Subject matter experts, 17–18
Supervised learning

unsupervised and, 231
via support vector machines (SVM), 231–233

Support vector machines (SVM), 231
in R, 233–245
supervised learning via, 231–233

System architects, 2
Testing functions, 73–76
Text

file reading, 176–180
mining, other uses of, 193–194
mining package, 180–183

Texture in visualizations, 139
Transformation, data, 4, 140
Tufte, Edward, 140
Twitter, 193
Uncertainty and risk, exploring, 19–20
Unsupervised learning, 231



U.S. Census Bureau, 49
Variance, 84
Variety, data, 261
Vectors, creating and using, 25–29
Velocity, data, 261
Verzani, John, 62
Visualizations, 4

advanced ggplot2, 150–155
ggplot2, 142–149
map, 159–161, 162 (figure), 165–172
overview, 139–141

Volume, data, 261
Ward, Matthew, 139
Web applications

created in R, 247–253
deploying, 254–259

Wijffels, Jan, 269
Wikipedia, 5, 197
Word clouds, 175–176

creation, 183–184, 185 (figure)
reading in text files and, 176–180
using the text mining package for, 180–183

Words and sentiment analysis, 189–193
XML, 111–112
Yourdon, Ed, 32
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