
Latent Trait Measurement Models  

for Other (not Binary) Responses 

Today’s Topics: 

 Review of generalized models for categorical outcomes 

 Ordered Categories  Graded Response 

 Maybe Ordered Categories  Partial Credit 

 Unordered Categories  Nominal Response 

 Count Outcomes  Poisson and Negative Binomial 

 Too many Zeros Outcomes  Zero-Inflated/Hurdle/Two-Part 
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Too Logit to Quit…http://www.youtube.com/watch?v=Cdk1gwWH-Cg  

• The logit is also the basis for many other generalized models 

for predicting categorical outcomes 

 

• Next we’ll see how 𝐶 possible response categories can be 

predicted using 𝐶 − 1 binary “submodels” that involve carving 

up the categories in different ways, in which each binary 

submodel uses a logit link to predict its outcome 

 

• Types of categorical outcomes: 

 Definitely ordered categories: “cumulative logit” 

 Maybe ordered categories: “adjacent category logit” (not used much) 

 Definitely NOT ordered categories: “generalized logit” 
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Logit-Based Models for C Ordinal Categories 

• Known as “cumulative logit” or “proportional odds” model in generalized 

models; known as “graded response model” in IRT 

 LINK=CLOGIT, DIST=MULT in SAS GLIMMIX 

• Models the probability of lower vs. higher cumulative categories via 𝐶 − 1 

submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3):  

           0 vs. 1, 2,3        0,1 vs. 2,3 0,1,2 vs. 3 

 

 

• In SAS, what the binary submodels predict depends on whether the model 

is predicting DOWN (𝐲𝐢 = 𝟎, the default) or UP (𝐲𝐢 = 𝟏) cumulatively  

• Example predicting UP in an empty model (subscripts=parm,submodel) 

• Submodel 1: Logit yi > 0 = β01     𝑝 yi > 0 = exp β01 / 1 + exp β01  

• Submodel 2: Logit yi > 1 = β02     𝑝 yi > 1 = exp β02 / 1 + exp β02  

• Submodel 3: Logit yi > 2 = β03     𝑝 yi > 2 = exp β03 / 1 + exp β03  

Submodel3 Submodel2 Submodel1 

I’ve named these submodels 

based on what they predict, 

but SAS will name them its 

own way in the output. 
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Logit-Based Models for C Ordinal Categories 

• Models the probability of lower vs. higher cumulative categories via 𝐶 − 1 

submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3):  

 0 vs. 1,2,3        0,1 vs. 2,3 0,1,2 vs. 3 

 

 

 

 

• In SAS, what the binary submodels predict depends on whether the model 

is predicting DOWN (𝐲𝐢 = 𝟎, the default) or UP (𝐲𝐢 = 𝟏) cumulatively  

 Either way, the model predicts the middle category responses indirectly 

 

• Example if predicting UP with an empty model: 

 Probability of 0 =       1 – Prob1    

Probability of 1 = Prob1– Prob2 

Probability of 2 = Prob2– Prob3 

Probability of 3 = Prob3– 0 

Submodel3  

 Prob3 

Submodel2  

 Prob2 

Submodel1 

 Prob1 

The cumulative submodels that create these 

probabilities are each estimated using all the 

data (good, especially for categories not chosen 

often), but assume order in doing so (may be 

bad or ok, depending on your response format). 

Logit yi > 2 = β03     
 

 𝑝 yi > 2 =
exp β03

1+exp β03
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Logit-Based Models for C Ordinal Categories 

• Ordinal models usually use a logit link transformation, but they can also use 

cumulative log-log or cumulative complementary log-log links 

 LINK= CUMLOGLOG or CUMCLL, respectively, in SAS PROC GLIMMIX 

 

• Almost always assume proportional odds, that effects of predictors are the 

same across binary submodels—for example (subscripts = parm, submodel) 

 Submodel 1: Logit yi > 0 = 𝛃𝟎𝟏 + β1Xi + β2Zi + β3XiZi 

 Submodel 2: Logit yi > 1 = 𝛃𝟎𝟐 + β1Xi + β2Zi + β3XiZi 

 Submodel 3: Logit yi > 2 = 𝛃𝟎𝟑 + β1Xi + β2Zi + β3XiZi 

 

• Proportional odds essentially means no interaction between submodel and 

predictor effects, which greatly reduces the number of estimated parameters 

 Assumption for single-level data can be tested painlessly using PROC LOGISTIC, 

which provides a global SCORE test of equivalence of all slopes between submodels 

 If the proportional odds assumption fails and 𝐶 > 3, you’ll need to write your own 

model non-proportional odds ordinal model in PROC NLMIXED 
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Logit-Based Models for C Categories 

• Uses multinomial distribution for residuals, whose PDF for 
𝐶 = 4 categories of 𝑐 = 0,1,2,3, an observed 𝑦𝑖 = 𝑐, and 
indicators 𝐼 if 𝑐 = 𝑦𝑖 

            𝑓 yi = c = 𝑝i0
I[yi=0]𝑝i1

I[yi=1]𝑝i2
I[yi=2]𝑝i3

I[yi=3] 

 Maximum likelihood is then used to find the most likely parameters in 
the model to predict the probability of each response through the 
(usually logit) link function; probabilities sum to 1:  𝑝ic

C
c=1 = 1 

 

• Other models for categorical data that use the multinomial: 

 Adjacent category logit (partial credit): Models the probability of  
each next highest category via 𝐶 − 1 submodels (e.g., if 𝐶 = 4):  

 0 vs. 1   1 vs. 2  2 vs. 3 

 Baseline category logit (nominal): Models the probability of reference 
vs. other category via 𝐶 − 1 submodels  (e.g., if 𝐶 = 4 and 0 = ref):  

 0 vs. 1   0 vs. 2  0 vs. 3 

 

 

 

Only 𝑝𝑖𝑐 for the response 

𝑦𝑖 = 𝑐  gets used 
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In nominal models, all 

parameters are estimated 

separately per submodel 



Polytomous Items = Categorical Outcomes 

• Polytomous = more than 2 options 

• Polytomous models are not numbered like binary models, but 

instead get called different names 

 Most have a 1-PL vs. 2-PL version that go by different names 

 Within each, different constraints on what to do with multiple options 

 

• Three main kinds of polytomous models: 

 Response options are ordered for sure  Cumulative Logit 

 Graded Response or Modified Graded Response Model (IRT and IFA) 

 Response options may be ordered Adjacent Category Logit 

 (Generalized) Partial Credit Model or Rating Scale Model (IRT only) 

 No way are these response options ordered  Baseline Category Logit 

 Nominal Response Model (IRT and IFA) 

PSYC 948:  Lecture 7 7     



The Threshold Concept 

• Each categorical variable is really the chopped-up version of a pretend 

underlying continuous variable (𝐲∗) with mean = 0 (variance = 1.00 or 3.29) 

• Polytomous models will differ in how they make use of multiple thresholds 

per item in which C = # categories, so # thresholds per item = k = C−1 

Probit 𝛔𝐞
𝟐 = 1.00 

(SD=1) 

Logit  

𝛔𝐞
𝟐 = 3.29 

(SD=1.8) 

yi = 0 

Threshold 

P
ro

b
ab

il
it

y
 

 

yi = 1 

Transformed yi (yi
∗)  
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yi = 0 yi = 2 yi = 1 

𝐲𝐢
∗ = 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝐫𝐞𝐬𝐭 𝐨𝐟 𝐲𝐨𝐮𝐫 𝐦𝐨𝐝𝐞𝐥 + 𝐞𝐢 

Threshold 1 Threshold 2 

Transformed yi (yi
∗)  



Graded Response Model for Ordinal Categories 

• Ideal for items with clear underlying response continuum (e.g., Likert) 

• # response options don’t have to be the same across items 

• GRM is an “indirect” or “difference” model  

 Compute difference between models to get probability of each response 

• Estimate 1 ai per item and 𝑘 = C − 1 difficulties (4 options  3 difficulties) 

• Models the probability of lower vs. higher cumulative categories via  

𝑘 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3):  

           0 vs. 1, 2,3        0,1 vs. 2,3 0,1,2 vs. 3 

 

 

• Each submodel is estimated using all the data cumulatively (assumes order) 

• As with binary items, Mplus estimates the IFA model directly (loadings and 

thresholds), but unlike binary items, it won’t do the IRT conversion into 

discriminations and difficulties (but see my spreadsheet for help) 

Submodel3 Submodel2 Submodel1 

Mplus will refer to these 

thresholds using $1, $2, 

$3 after the item name 
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Example Graded Response Model (GRM) 

IRT version of the GRM: Note that 𝐚𝐢 is the same across submodels… 

• 0 vs. 1,2,3: Logit yis > 0 = ai θs − b1i    𝑝1 yis > 0 =
      exp ai θs−b1i

1+exp ai θs−b1i
 

• 0,1 vs. 2,3: Logit yis > 1 = ai θs − b2i    𝑝2 yis > 1 =
     exp ai θs−b2i

1+exp ai θs−b2i
 

• 0,1,2 vs. 3: Logit yis > 2 = ai θs − b3i    𝑝3 yis > 2 =
      exp ai θs−b3i

1+exp ai θs−b3i
 

IFA version of the GRM—what is actually estimated in Mplus: 

• 0 vs. 1,2,3: Logit yis > 0 = −τ1i + λiFs   𝑝1 yis > 0 =
      exp −τ1i+λiFs

1+exp −τ1i+λiFs
 

• 0,1 vs. 2,3: Logit yis > 1 = −τ2i + λiFs   𝑝2 yis > 1 =
    exp −τ2i+λiFs

1+exp −τ2i+λiFs
 

• 0,1,2 vs. 3: Logit yis > 2 = −τ3i + λiFs   𝑝3 yis > 2 =
     exp −τ3i+λiFs

1+exp −τ3i+λiFs
 

GRM indirectly predicts probability of each category 

 𝑝 yis = 0 =   1 − 𝑝1 
𝑝 yis = 1 = 𝑝1 − 𝑝2 

𝑝 yis = 2 = 𝑝2 − 𝑝3 

𝑝 yis = 3 = 𝑝3 − 0 
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IRT 𝐛𝐤𝐢 = trait level needed for a 50% probability 

(logit =0) of the higher binary category 
 

IFA 𝛕𝐤𝐢 = logit of the probability of the  

lower binary category when Factor = 0 



Cumulative Item Response Curves: 

GRM for 4-Category (0123) Item, ai=1 

b1 = -2 b3 = 2 b2 = 0 

ai = 1  all 

curves have 

same slope 
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Cumulative Item Response Curves: 

GRM for 4-Category (0123) Item, ai=2 

b1 = -2 b3 = 2 b2 = 0 

ai = 2  

slope is 

steeper 
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Category Response Curves: 

GRM for 4-Category (0123) Item, ai=2 

GRM indirectly 

predicts the 

probability of each 

category response 

across Theta: 
 
𝑝 yis = 0 =   1 − 𝑝1 
𝑝 yis = 1 = 𝑝1 − 𝑝2 
𝑝 yis = 2 = 𝑝2 − 𝑝3 
𝑝 yis = 3 = 𝑝3 − 0 

Mplus will make this 

type of Plot for you. 
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Category Response Curves: 

GRM for 4-Category (0123) Item, ai=.5 

This is exactly 

what you do NOT 

want to see.  

Although they are 

ordered, the 

middle categories 

are worthless (not 

differentiated). 
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“Modified” (“Rating Scale”) 

Graded Response Model (MGRM) 
• More parsimonious version of GRM for items with same response options 

• In GRM, k*#items difficulties + 1 discrimination are estimated per item 

• In MGRM, each item gets own slope and own overall ‘location’ parameter, 
but the differences between categories around that location are 
constrained to be equal across items (get a “c” shift for each threshold) 

 So, different ai and bi per item, but same c1, c2, and c3 across items (one c = 0) 

 Not directly available within Mplus, but can be using threshold constraints 

• 0 vs. 1,2,3: Logit yis > 0 = ai θs − bi + c1    𝑝1 yis > 0 =
      exp ai θs−bi+c1

1+exp ai θs−bi+c1
 

• 0,1 vs. 2,3: Logit yis > 1 = ai θs − bi + c2    𝑝2 yis > 1 =
      exp ai θs−bi+c2

1+exp ai θs−bi+c2
 

• 0,1,2 vs. 3: Logit yis > 2 = ai θs − bi + c3    𝑝3 yis > 2 =
      exp ai θs−bi+c3

1+exp ai θs−bi+c3
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Modified vs. Regular GRM 
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Modified GRM   

k “shift” c terms: All 

category distances 

are same across 

items, and each item 

gets its own “bi” 

overall location 

Original GRM   

k locations per 

item: All category 

distances differ 

across items 

b3 

b2 

b1 

c1 
c2 c3 

b11 b12 b13 

b21 b22 b23 

b31 b32 b33 



Summary of Models for 

Ordered Categorical Responses 
Some of these in Mplus  

via “CATEGORICAL ARE” 

Difficulty Per Item 

Only (category 

distances equal) 

Difficulty 

Per Category  

Per Item 

Equal discrimination 

across items (1-PLish)? 

(possible, but no 

special name) 

(possible, but no 

special name) 

Unequal discriminations  

(2-PLish)? 

“Modified GRM” or 

“Rating Scale GRM” 
(same response options) 

“Graded Response 

Model” 

“Cumulative Logit” 

• GRM and Modified GRM are reliable models for ordered categorical data 

 Commonly used in real-world testing; most stable to use in practice 

 Least data demand because all data get used in estimating each bki 

 Only major deviations from the model will end up causing problems 
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(Generalized) Partial Credit Model (PCM) 

• When you want to test an assumption of an ordered underlying continuum 

• # response options doesn’t have to be same across items, but there is 

no guarantee that every category will be most likely at some point  

• Is a “direct, divide-by-total” model (prob of each category is given directly)  

• Estimate k difficulty-like 𝛅𝐤𝐢 “step” parameters, which are the Theta values 

at which the next category becomes more likely (not necessarily 50%) 

• Models the probability of adjacent categories (“adjacent category logit”) 

 Divide item into a series of binary items, but without order constraints beyond 

adjacent categories because it only uses those 2 categories (𝑐 = 0,1,2,3):  

IRT for PCM (not in Mplus): Is “generalized” if 𝐚𝐢 is used instead of 𝐚 

• If 0 or 1: Logit yis = 1 = ai θs − δ1i    𝑝1 yis = 1 =
      exp ai θs−δ1i

1+exp ai θs−δ1i
 

• If 1 or 2: Logit yis = 2 = ai θs − δ2i    𝑝2 yis = 2 =
     exp ai θs−δ2i

1+exp ai θs−δ2i
 

• If 2 or 3: Logit yis = 3 = ai θs − δ3i    𝑝3 yis = 3 =
      exp ai θs−δ3i

1+exp ai θs−δ3i
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Category Response Curves: 

PCM for 4-Category (0123) Item, ai=1 
PCM directly predicts 

the probability of each 

category response 

across Theta: 
𝑝 yis = 0 = 1 − 𝑝1 
𝑝 yis = 1 = 𝑝1 
𝑝 yis = 2 = 𝑝2 
𝑝 yis = 3 = 𝑝3 

These curves look 

similar to the GRM, but 

the location parameters 

are interpreted differently 

because they are NOT 

cumulative, they are only 

adjacent… 
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Category Response Curves: 

PCM for 4-Category (0123) Item, ai=1 

δ01 δ12 

δ23 

The 𝛅𝐤𝐢 terms are 

the location where 

the next category 

response becomes 

more likely (not 

necessarily 50%). 
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Category Response Curves: 

PCM for 4-Category (0123) Item, ai=1 

δ01 δ12 

δ23 

…a score of 2 instead of 

1 requires less Theta than 

1 instead of 0 … 

This is called a ‘reversal’ 

But here, this likely only 

happens because of a 

very low frequency of 1’s 
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Response Categories 

0 = green = Time-Out 

1 = pink   = 30 – 45 s 

2 = blue   = 15 – 30 s 

3 = black  = < 15 s 

    *Misfit (p < .05) 

More of what 

you don’t want 

to see… category 

response curves 

from a PCM 

where reversals 

are a plenty…  

…and the middle 

categories are 

fairly useless.  
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-3 -2 -1 0 1 2 3

Latent Trait Score

PCM Example: 

General Intrusive 

Thoughts (5 options) 

WBSI 9: a = .84, b = -.34

WBSI 6: a = 1.04, b = -.30

WBSI 4: a = .94, b = -.10

WBSI 3: a = 1.09, b = -.10

WBSI 5: a = .65, b = .01

WBSI 7: a = .57, b = .17

Note that the 4 thresholds cover a wide 

range of the latent trait, and what the 

distribution of Theta looks like as a 

result... 

But the middle 3 categories are used 

infrequently and/or are not differentiable 
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-3 -2 -1 0 1 2 3

Latent Trait Score

IES 5: a = 1.25, b = .06

IES 11: a = 1.14, b = 

.10

IES 1: a = 1.10, b = .13

IES 10: a = .94, b = .19

IES 14: a = .96, b = .20

IES 4: a = .76, b = .57

IES 6: a = .88, b = .68

Partial Credit 

Model Example: 

Event-Specific 

Intrusive Thoughts 

(4 options) 

Note that the 3 thresholds do 

not cover a wide range of 

the latent trait, and what the 

distribution of theta looks like 

as a result… 
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Rating Scale Model (RSM) 

• More parsimonious version of PCM for items with same response format 

• In PCM, k*#items step parameters +1 discrimination are estimated per item 

• In RSM, each item gets own slope and own overall ‘location’ parameter, but 

the differences between categories around that location are constrained to 

be equal across items (get a “c” shift for each threshold; one c = 0) 

 So, different bi (and possibly ai) per item, but same c1, c2, and c3 across items 

 Also not available within Mplus 

• If 0 or 1: Logit yis = 1 = a θs − δi + c1    𝑝1 yis = 1 =
      exp a θs−δi+c1

1+exp a θs−δi+c1
 

• If 1 or 2: Logit yis = 2 = a θs − δi + c1    𝑝2 yis = 2 =
      exp a θs−δi+c2

1+exp a θs−δi+c2
 

• If 2 or 3: Logit yis = 3 = a θs − δi + c1    𝑝3 yis = 3 =
      exp a θs−δi+c3

1+exp a θs−δi+c3
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Rating Scale vs. Regular PCM 
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Rating Scale  

k “shift” c terms: All 

category distances 

are same across 

items, and each item 

gets its own “𝛅i” 

overall location 

Original PCM   

k locations per 

item: All category 

distances differ 

across items 

𝛅3 

𝛅2 

𝛅1 

c1 
c2 c3 

𝛅11 𝛅12 𝛅13 

𝛅21 𝛅22 𝛅23 

𝛅31 𝛅32 𝛅33 



Summary of Models for Maybe- 

Ordered Categorical Responses 
Not directly available in 

Mplus 

Difficulty Per Item 

Only (category 

distances equal) 

Difficulty 

Per Category  

Per Item 

Equal discrimination 

across items (1-PLish)? 

“Rating Scale PCM” “Partial Credit 

Model” 

Unequal discriminations  

(2-PLish)? 

“Generalized Rating 

Scale PCM”??  
(same response options) 

“Generalized PCM” 

“Adjacent Category 

Logit” 

• Partial Credit Models test the assumption of ordered categories 

 This can be useful for item screening, but perhaps not for actual analysis 

• These models have additional data demands relative to GRM 

 Only data from that threshold get used (i.e., for 1 vs. 2, 0 and 3 don’t contribute) 

 So larger sample sizes are needed to identify all model parameters 

 Sometimes categories have to be consolidated to get the model to not blow up 
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Nominal Response Model for Unordered Categories 

• Ideal for items with no ordering of any kind (e.g., favorite color) 

• # response options don’t have to be the same across items 

• NRM is a “direct” model  prob of each category given directly 

• Estimate 𝑘 ai per item and 𝑘 “intercepts” per item 

• Models the probability of each category relative to a baseline category 

(sort of like dummy-coding the outcome variable, here baseline = 0): 

 

           0 vs. 1                  0 vs. 2    0 vs. 3 

 

 

• Available in Mplus with NOMINAL ARE option (estimated as an IFA model) 

• Can be useful to examine utility of distractors in multiple choice tests 

Submodel3 Submodel2 Submodel1 

Mplus will refer to these 

“intercepts” using #1, #2, 

#3 after the item name 
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Example Nominal Response Model (NRM) 

IRT version of the NRM: Note that 𝐚𝐢 is NOT the same across submodels… 

• If 0 or 1: Logit yis = 1 = a1i θs − b1i    𝑝1 yis = 1 =
      exp a1i θs+b1i

1+exp a1i θs+b1i
 

• If 0 or 2: Logit yis = 2 = a2i θs − b2i    𝑝2 yis = 2 =
     exp a2i θs+b2i

1+exp a2i θs+b2i
 

• If 0 or 3: Logit yis = 3 = a3i θs − b3i    𝑝3 yis = 3 =
      exp a3i θs+b3i

1+exp a3i θs+b3i
 

IFA version of the GRM—what is actually estimated in Mplus: 

• If 0 or 1: Logit yis = 1 = −τ1i + λ1iFs   𝑝1 yis = 1 =
     exp μ1i+λ1iFs

1+exp μ1i+λ1iFs
 

• If 0 or 2: Logit yis = 2 = −τ2i + λ2iFs   𝑝2 yis = 2 =
    exp μ2i+λ2iFs

1+exp μ2i+λ2iFs
 

• If 0 or 3: Logit yis = 3 = −τ3i + λ3iFs   𝑝3 yis = 3 =
     exp μ3i+λ3iFs

1+exp μ3i+λ3iFs
 

GRM directly predicts probability of each category 

 𝑝 yis = 0 = 1 − 𝑝1 + 𝑝2 + 𝑝3 
𝑝 yis = 1 = 𝑝1 
𝑝 yis = 2 = 𝑝2 
𝑝 yis = 3 = 𝑝3 
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IRT 𝐛𝐤𝐢 = trait level needed for a 50% prob 

(logit =0) of the lower binary category 

IFA 𝛍𝐤𝐢 = logit of the probability of the  

higher binary category when Factor = 0 



Category Response Curves 

(NRM for 5-Category Item) 
Nominal Response Item Response Function
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)

P(X=a|Theta)

P(X=b|Theta)

P(X=c|Theta)

P(X=d|Theta)d 

c 

a 

b 

Example Analysis 

of Multiple Choice 

Distractors:  
 

People low in Theta 

are most likely to 

pick d, but c is their 

second choice 

People high in Theta 

are most likely to 

pick a, but b is their 

second choice 
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Summary: Polytomous Models 

Many kinds of polytomous IRT/IFA models… 
• Some assume order of response options… (IRT/IFA in Mplus) 

 Graded Response Model Family  “cumulative logit model” 

 Model cumulative change in categories using all data for each 

 

• Some allow you to test order of response options… (but no Mplus IFA) 

 Partial Credit Model Family  “adjacent category logit model” 

 Model adjacent category thresholds only, so they allow you to see reversals (empirical 
mis-ordering of your response options with respect to Theta) 

 PCM useful for identifying separability and adequacy of categories 

 Can be done using SAS NLMIXED (although very slowly… see example) 

 

• Some assume no order of response options… (IRT/IFA in Mplus) 

 Nominal Model  “baseline category logit model” 

 Useful to examine probability of each response option 

 Is very unparsimonious and thus can be hard to estimate 
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Discrete Models for Count Outcomes 

• Counts: non-negative integer unbounded responses 

 e.g., how many cigarettes did you smoke this week? 

 Traditionally uses natural log link so that predicted outcomes stay ≥ 0 

 

• 𝐠 ⦁      Log E yi = Log μi = model  predicts yi 

• 𝐠−𝟏 ⦁   E(yi) = exp(model)  to un-log it, use exp(model)   

 

• IFA model (no IRT analog): 𝐋𝐨𝐠 𝐲𝐢𝐬 = 𝛍𝐢+  𝛌𝐢𝐅𝐬 + (𝐞𝐢𝐬) 

 Model has intercepts and loadings, just predicting log(yis) instead 

 In Mplus, identify outcomes as COUNT = in VARIABLE: section 

 

• What about an estimated residual variance? It depends… 
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Poisson Distribution for Residuals 

• Poisson distribution has one parameter, 𝜆, which is both its 

mean and its variance (so 𝜆 = mean = variance in Poisson) 

• 𝑓 yi|λ = Prob yi = y =
λy∗exp −λ

y!
 

• PDF: Prob yi = y|β0, β1, β2 =
μi
y
∗exp −μi

y!
 

𝑦! is factorial of 𝑦  

The dots indicate that only 

integer values are observed. 

 

Distributions with a small 

expected value (mean or 𝜆) are 

predicted to have a lot of 0’s. 

 

Once 𝜆 > 6 or so, the shape of 

the distribution is close to a that 

of a normal distribution. 𝑦  
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3 potential problems for Poisson… 
• The standard Poisson distribution is rarely sufficient, though 

 

• Problem #1: When mean ≠ variance 

 If variance < mean, this leads to “under-dispersion” (not that likely) 

 If variance > mean, this leads to “over-dispersion” (happens frequently) 

 

• Problem #2: When there are no 0 values 

 Some 0 values are expected from count models, but in some contexts  
yi > 0 always (but subtracting 1 won’t fix it; need to adjust the model) 

 

• Problem #3: When there are too many 0 values 

 Some 0 values are expected from the Poisson and Negative Binomial models 
already, but many times there are even more 0 values observed than that 

 To fix it, there are two main options, depending on what you do to the 0’s 

 

• Each of these problems requires a model adjustment to fix it… 
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Problem #1: Variance > mean = over-dispersion 

• To fix it, we must add a parameter that allows the variance to 

exceed the mean  a Negative Binomial (NB) distribution 

 Says residuals are a mixture of Poisson and gamma distributions,  

such that 𝜆 itself is a random variable with a gamma distribution 

 So expected mean is still given by 𝜆, but the variance will be > Poisson 

 

• IFA Model:  𝐋𝐨𝐠 𝐲is = 𝛍𝐢 + 𝛌i𝐅𝐬 + 𝐞𝐢𝐬
𝐆     

 NB has a 𝑘 dispersion parameter, such that: Var yis = 𝑘(1 + 𝑘α) 

 Poisson is nested within negative binomial (can do –2ΔLL test of α ≠ 0) 

 

• In Mplus, specify which residual distribution you want: 

 COUNT = y1 (p) y2 (nb);  y1 is Poisson; y2 is negative binomial  
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Negative Binomial (NB) = “Stretchy” Poisson… 

• Because its 𝑘 dispersion parameter is fixed to 0, the Poisson model is 

nested within the Negative Binomial model—to test improvement in fit: 

• Is −2 𝐿𝐿𝑃𝑜𝑖𝑠𝑠𝑜𝑛 − 𝐿𝐿𝑁𝑒𝑔𝐵𝑖𝑛 > 3.84 for 𝑑𝑓 = 1? Then 𝑝 <  .05, keep NB 

Mean = λ 
Dispersion = k 
Var yis = 𝑘(1 + 𝑘α) 

A Negative Binomial 

model can be useful 

for count residuals 

with extra skewness, 

but otherwise follow  

a Poisson distribution. 
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Problem #2: There are no 0 values 

• “Zero-Altered” or “Zero-Truncated” Poisson or Negative 

Binomial: ZAP/ZANB or ZTP/ZTNB (used in hurdle models) 

 Is usual NB distribution, just not allowing any 0 values 

 In Mplus, COUNT = var1 (nbt);   Negative Binomial Truncated 

 It does NOT work to just subtract 1 and use a usual count distribution 

 

• Poisson PDF was:  Prob yi = y|μi =
μi
y
∗exp −μi

y!
 

• Zero-Truncated Poisson PDF is:  

 Prob yi = y|μi,yi > 0 =
μi
y
∗exp −μi

y! 1−exp −μi
 

 Prob yi = 0 = exp −μi , so Prob yi > 0 = 1 − exp −μi  

 Divides by probability of non-0 outcomes so probability still sums to 1 
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Problem #3: Too many 0 values, Option #1 

• “Zero-Inflated” Poisson (pi) or Negative Binomial (nbi); 

available within Mplus using COUNT = 

 Distinguishes two kinds of 0 values: expected and inflated 

(“structural”) through a mixture of distributions (Bernoulli + Poisson/NB) 

 Creates two submodels to predict “if extra 0” and “if not, how much”? 

 Does not readily map onto most hypotheses (in my opinion) 

 But a ZIP example would look like this… (ZINB would add k dispersion, too) 

 

• Submodel 1: Logit yis = extra 0 = −τi1 + λi1Fs1 

 Predict being an extra 0 using Link = Logit, Distribution = Bernoulli 

 Don’t have to specify a factor model for this part, can simply allow a threshold 

that says your data have extra 0 values relative to the usual count distribution 
 

• Submodel 2: Log yis = μi2 + λi2Fs2 

 Predict rest of counts (including 0’s expected from count distribution) 
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Example of Zero-Inflated Outcomes 
Zero-inflated distributions 

have extra “structural 

zeros” not expected from 

Poisson or NB (“stretched 

Poisson”) distributions. 

This can be tricky to 

estimate and interpret 

because the model 

distinguishes between 

kinds of zeros rather than 

zero or not... 

Image borrowed 

from Atkins & 

Gallop, 2007 
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Problem #3: Too many 0 values, Option #2 

• “Hurdle” models for Poisson or Negative Binomial 

 PH (not in Mplus) or NBH: Explicitly separates 0 from non-0 values 
through a mixture of distributions (Bernoulli + Zero-Altered Poisson/NB) 

 Creates two submodels to predict “if any 0” and “if not 0, how much”? 

 Easier to think about in terms of prediction (in my opinion) 

 

• Submodel 1: Logit yis = 0 = −τi1 + λi1Fs1 

 Predict being any 0 using Link = Logit, Distribution = Bernoulli 

 Don’t have to specify predictors for this part, can simply allow it to exist 

 

• Submodel 2:Log yis|yis > 0 = μi2 + λi2Fs2 

 Predict rest of positive counts using Link = Log, Distribution = ZAP or ZANB  

 

• These models are not readily available in SAS, but NBH is in Mplus 

 Could be fit in SAS NLMIXED (as could ZIP/ZINB) 
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Two-Part Models for Continuous Outcomes 

• A two-part model is an analog to hurdle models for zero-inflated 
count outcomes (and could be used with count outcomes, too) 

 Explicitly separates 0 from non-0 values through a mixture of distributions 
(Bernoulli + Normal or LogNormal)  usually much easier to explain! 

 

• Submodel 1: Logit yi > 0 = −τi1 + λi1Fs1  predict being NOT 0 

 

• Submodel 2: yi|yi > 0 = μi2 + λi2Fs2  predicts non-0 using 
normal or lognormal residuals 

 

 Two-part model uses Mplus DATA TWOPART: command 

 NAMES ARE y1-y4;     list outcomes to be split into 2 parts 

 CUTPOINT IS 0;                    where to split observed outcomes 

 BINARY ARE b1-b4;              create names for “0 or not” part 

 CONTINUOUS ARE c1-c4;    create names for “how much” part 

 TRANSFORM IS LOG;           transformation of continuous part 

 0 or not: predicted by logit of being NOT 0 (“something” is the 1) 

 How much: predicted by transformed normal distribution (like log) 
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Pile of 0’s Taxonomy 
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• What kind of amount do you want to predict? 

 Discrete: Count  Poisson, Stretchy Count  Negative Binomial 

 Continuous: Normal, Log-Normal, Gamma (not in Mplus) 

 

• What kind of If 0 do you want to predict? 

 Discrete: Extra 0 beyond predicted by amount? 

 Zero-inflated Poisson or Zero-inflated Negative Binomial 

 Discrete: Any 0 at all? 

 Hurdle Poisson or Hurdle Negative Binomial 

 Continuous: Any 0 at all? 

 Two-Part with Continuous Amount (see above) 

 Note: Given the same amount distribution, these alternative ways 

of predicting 0 will result in the same empty model fit 



Wrapping Up… 

• When fitting latent factor models (or when just predicting 

observed outcomes from observed predictors instead), you 

have many options to fit non-normal distributions 

 CFA: Continuous outcomes with normal residuals, X  Y is linear 

 If residuals may not be normal but a linear X Y relationship is still plausible, 

you can use MLR estimation instead of ML to control for that 

 IRT and IFA: Categorical or ordinal outcomes with Bernoulli/multinomial 

residuals, X  transformed Y is linear; X  original Y is nonlinear 

 Full information MML traditionally paired with IRT version of model; limited 

information WLSMV traditionally paired with IFA version of model instead 

 Count family: Non-negative integer outcomes, X  Log(Y) is linear 

 Residuals can be Poisson (where mean = variance) or negative binomial 

(where variance > mean); either can be zero-inflated or zero-truncated 

 Hurdle or two-part may be more direct way to predict/interpret excess zeros  

(predict zero or not and how much rather than two kinds of zeros) 
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