

Summer School in Applied Psychometric Principles

Peterhouse College 13th to 17th September 2010

Day 3

Jan R. Böhnke University of Trier, Germany

Topics already covered

- We have...
 - Introduced IRT
 - Introduced simple models for binary responses
 - Discussed IRT assumptions
 - Introduced models for polytomous responses
 - Discussed assessment of fit for these models

Today

• We will spend a day with the Rasch Model

- Why that?
 - Rasch Model is a very simple test model
 - which has extraordinary measurement qualities
 - can be generalized to several applications
 - and which is testable

- The Rasch model can be seen as a very reduced / restricted version of the models we already encountered in the course:
 - the slopes for all items are constrained to be equal (usually $D\alpha = 1$)
 - no guessing parameter (c = 0)

$$P(u_{i} = 1 | \theta) = c_{i} + (1 - c_{i}) \frac{e^{Da_{i}(\theta - b_{i})}}{1 + e^{Da_{i}(\theta - b_{i})}}$$
$$P(u_{i} = 1 | \theta) = \frac{e^{(\theta - b_{i})}}{1 + e^{(\theta - b_{i})}}$$

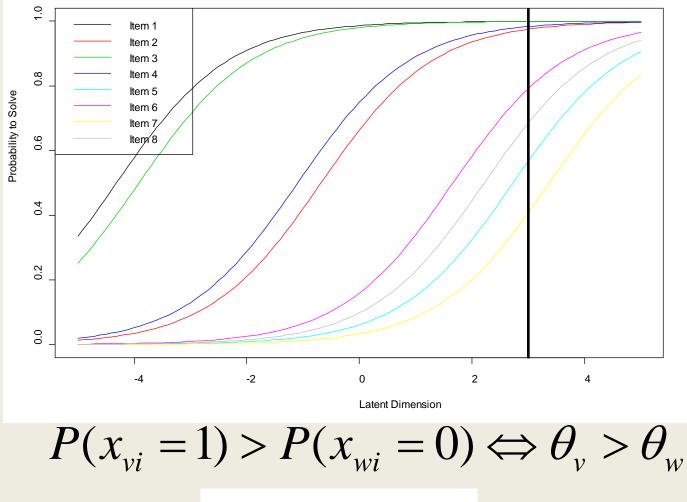
1.0 Item 1 ltem 2 Item 3 Item 4 0.8 ltem 5 Probability to Solve ltem 6 Item 7 0.6 Item 8 0.4 0.2 0.0 -2 2 0 4 -4 Latent Dimension

ICCs for Mobility survey items

- The fact that only one parameter is modeled leads to the models' most important consequence:
 - the ICCs are non-intersecting
 - thereby holds for any comparison of persons or items:

$$P(x_{vi} = 1) > P(x_{wi} = 0) \Leftrightarrow \theta_v > \theta_w$$

ICCs for Mobility survey items



CAMBRIDGE

- This feature of the Rasch Model is called "specific objectivity"; when the Rasch model holds:
 - irrespective of which combination of items from a scale, the same ordering of persons is obtained
 - irrespective of what subsample of persons, the items are ordered the same way according to their difficulty

$$P(x_{vi} = 1) > P(x_{wi} = 0) \Leftrightarrow \theta_v > \theta_w$$

- because both these orderings are stable (within measurement error):
 - it is not important which combination of items was solved by a respondent;
 - and from that follows that the sum of solved items contains all information about the respondent's position on the latent trait

$$P(x_{vi} = 1) > P(x_{wi} = 0) \Leftrightarrow \theta_v > \theta_w$$

CAMBRIDGE CAMBRIDGE CANTRING

- this principle of "specific objectivity" provides the possibility to construct two specific tests that test whether the data is Rasch-scalable or not:
 - the Andersen Likelihood Ratio Test: checks whether the invariance of item parameters in different subpopulation holds
 - the Martin Löf Test: checks whether the person parameters are invariant by splitting the scale into different subsets of items

Sideline: Guttman Scaling

- In Guttman scaling only specific patterns allowed:
 - items ordered according to their difficulty
 - a person solving a more difficult item has to solve all items that are easier than that

Items () 1 1

Sideline: Guttman Scaling

Items

()

1

1 1

1 1

()

()

- "deterministic model"
- only ordinal measurement possible but score also represents all available information on respondents
- Measurement Theorem:

 $(x_{vi} = 1) \land (x_{wi} = 0) \Leftrightarrow \theta_v > \theta_w$

- In essence the Rasch Model does exactly the same:
 - looking for an ordering of the items that describes persons as well as items on the same scale

Items

()

1

1

1

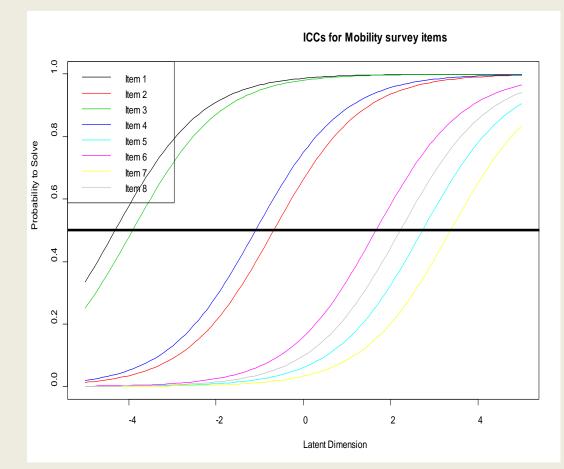
1

- the Rasch model is in a sense completely different:
 - it acknowledges
 measurement error:
 Guttman structure would be
 the ideal pattern, but
 deviations from that are
 possible
 - "probabilistic model"

Items

- the Rasch model is in a sense completely different:
 - by introducing a wellbehaved mathematical function to describe the relationship between the trait and the probability, it is possible to scale the items and scores on a (more than) interval continuum

- based on the data it can be assessed, where on the latent continuum the item is solved with a probability of 50%
- since the slope is defined by the mathematical function, distances between the locations can be measured



Dimensionality or Local independence assumption

- Item responses are independent after controlling for (conditional on) the latent trait
- There is only one dimension explaining variance in the item responses
 - based on this assumption non-parametric tests can already be employed to check whether the data fits the model BEFORE we even estimate the model (e.g. Ponocny, I. (2001). *Psychometrika, 66,* 437-460.)

Features of the Rasch-Model

- Two core differences to other IRT models:
 - it can be tested whether the respondents' patterns in the answer vectors comply with the assumtion of the Rasch Model (tests not based on "by-proxy" tests with factor analysis)
 - Compared to the other models the score is the "sufficient statistic"; in the other models it is a weighted sum

Estimating item parameters

- Joint maximum likelihood estimation (JML)
 - Uses *observed* frequencies of response patterns
 - Starting values for ability as proportion correct
 - 1. Estimate item parameters
 - 2. Use item parameters to re-estimate ability
 - Repeat last two steps until estimates do not change
- Marginal maximum likelihood (MML)
 - Uses expected frequencies of each response pattern
 - EM (Estimation and Maximisation) by Bock & Aitken (1981) is popular
- Conditional maximum likelihood (CML)
 - Uses sufficient statistics to exclude trait level parameters (only applies to the Rasch models)

Seambridge Cambridge The Psychometrics Centre

Estimating item parameters

• Conditional maximum likelihood (CML)

Formulas not important in detail, but: the estimator for every item parameter depends a) on the interaction of the location of all other items

b) conditional on all test scores

$$\hat{\delta}_{i} = \ln \left(\sum_{r=1}^{k} n_{r} \frac{\gamma_{r-1}^{(i)}(\epsilon)}{\gamma_{r}(\epsilon)} \right) - \ln(\mathbf{x}_{oi})$$

$$n(CL(X)) = \sum_{i=1}^{k} x_{oi} ln(\epsilon_{i}) - \sum_{r=0}^{k} n_{r} ln(\gamma_{r}(\epsilon))$$

(Wilhem Kempf, University of Konstanz)

Finding the examinee parameter

- Maximum likelihood (ML)
 - Maximising the likelihood function (iterative process)
 - ML estimator is unbiased, and its errors are normally distributed
 - Problems with ML is that convergence is not guaranteed with aberrant responses, and no estimator exists for all correct/incorrect responses
- Warm's Maximum Likelihood (WML)
 - often employed (e.g. WINMIRA) because it provides estimates for full/empty response patterns
 - more computational intensive than ML
 - more central estimates; SEs equal to ML
- Spline interpolation
 - estimator based on the relationship between scores and estimated person parameters
 - employed in eRm

CAMBRIDGE

EMPIRICAL EXAMPLE: BDI-DATA

PRACTICAL: MOBILITY DATA

Practical: Mobility survey

- The dimension of interest is women's mobility of social freedom.
- Women were asked whether they could engage in the following activities alone (1 = yes, 0 = no):

Estimation in R – eRm

library(eRm)

ResMob<-RM(*Itemmatrix*, se=TRUE, sum0=TRUE)

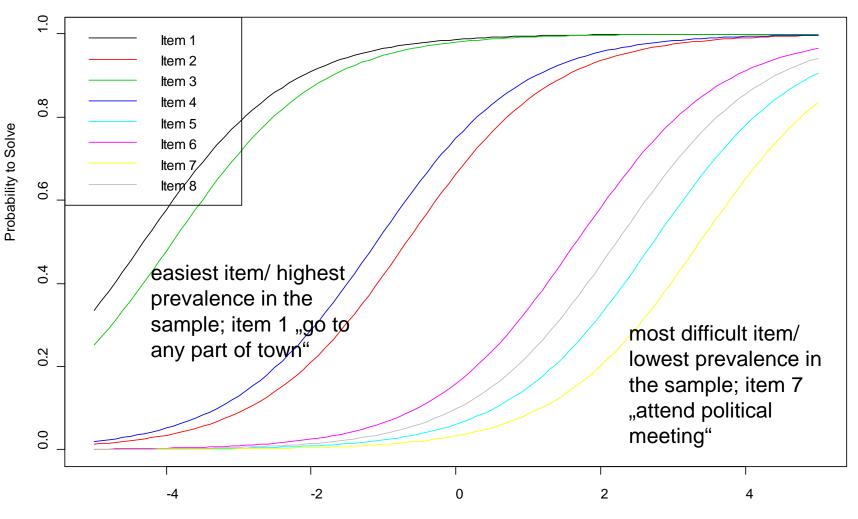
Itemmatrix is the Matrix containing the responses

se=TRUE (standard errors are estimated)
sum0=TRUE (b's are normed on 0)

Plotting

Item Characteristic Curves

ICCs for dichotomous Mobility items

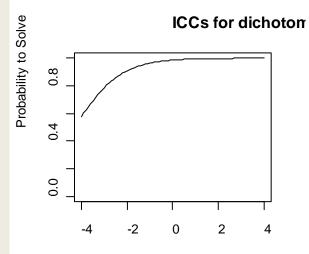


Latent Dimension

Plotting

plotICC(ResMob,empICC=list("kernel"),empCI=lis
 t(),main="ICCs for dichotomous Mobility
 items")

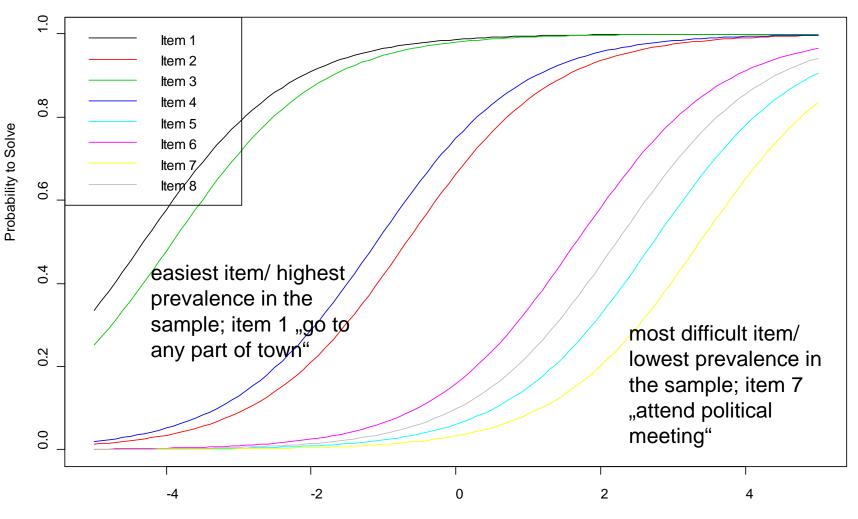
Plotting



Latent Dimension

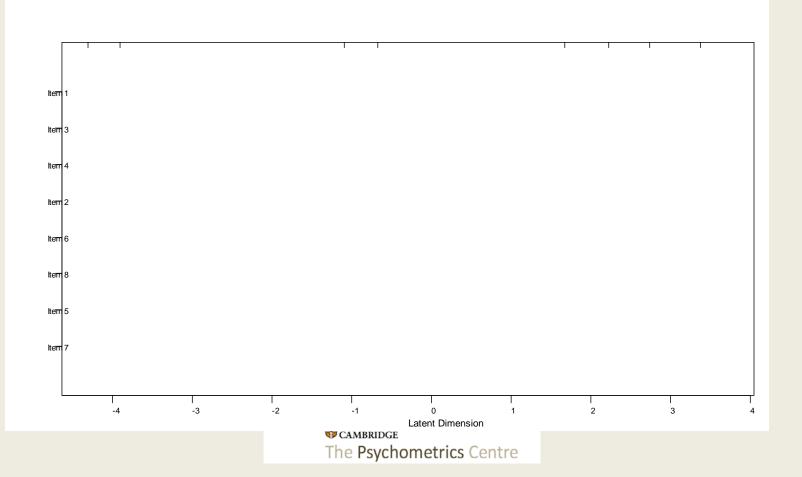
Item Characteristic Curves

ICCs for dichotomous Mobility items



Latent Dimension

Joint distribution of items and person parameters

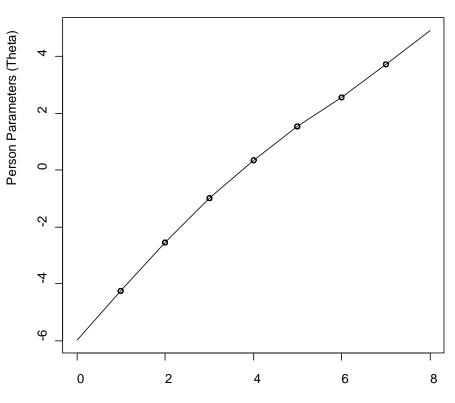


Estimating the person parameters

PersMob<-person.parameter(ResMob) plot(PersMob)

Relationship between scores and person parameters

- every score can be transformed into the scale-free metric of the person parameters
- not related in linear fashion (esp. in the tails)
- also: there are only as many person parameters estimated as possible scores (unlike in the other IRT models)



Person Raw Scores

Plot of the Person Parameters

CAMBRIDGE CAMBRIDGE CANTRING CONTROL

What if...?

- What would be won if the Rasch-Model fitted the data?
 - we know that the summed item score can be used as a simple descriptive measure for the ability (was also used to estimate the model)
 - we also would have the person parameters to represent the ability on a (better than) equal interval level
 - we would know that the test is fair at any rate ("specific objectivity")
- The nice thing about the Rasch-Model is, that clear predictions about the nature of the data follow from the model formulation and these predictions can be easily tested

CAMBRIDGE CAMBRIDGE Centre

Testing the Rasch Model

- Non-Parametric tests:
 - Ponocny, I. (2001). Psychometrika, 66, 437-460.
 - before estimating the Rasch Model at all we could test whether the observed item responses of the persons would be expected if the test was Rasch scaled
 - not covered in detail here

Testing the Rasch Model

- Parametric Tests based on "specific objectivity":
 - ANDERSEN'S LR-TEST: all estimated parameters are independent of the subgroup of the sample in which they are estimated (e.g. gender)
 - MARTIN LÖF-TEST: irrespective of which items are used, the comparison between two test persons should result in the same ordering

- Procedure:
 - The Rasch Model is estimated independently in both/all subgroups
 - and then the fit is compared using the likelihood:

 $\chi I = -2*(LN(Likelihood(full data set) + \sum (LN(Likelihood(Subgroup_g)))$

- with df=(g-1)*(k-1); with g = number of subgroups and k = number of items
- these Likelihoods should be the same, if the itemparameters (δ_i) were the same in all subgroups g_i.
 the test should be non-significant

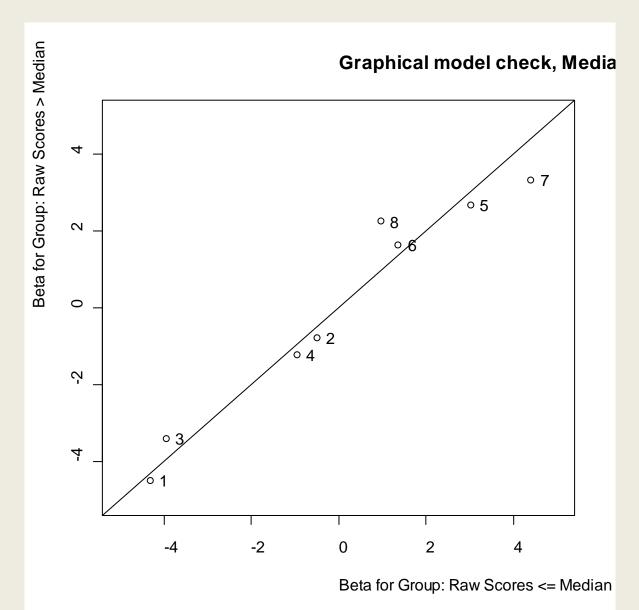
- the default test is with high vs. low scorer groups
- Sample is divided into two groups:
 - a: scores <= median;</pre>
 - b: scores > median

- Andersen1<-LRtest(ResMob,se=TRUE)
- summary(Andersen1)

- the default test is with high vs. low scorer groups
- Sample is divided into two groups:
 - a: scores <= median;</pre>
 - b: scores > median
- χ² = 78.36 with df=7; p < .001
- the 8 items do not have the same difficulty parameters in both samples

• Plotting:

plotGOF(Andersen1,main="Graphical model check, Median",tlab="number", ctrline=list(gamma=0.95, col="blue", lty="dashed"), conf=list(),xlim=c(-5,5),ylim=c(-5,5))

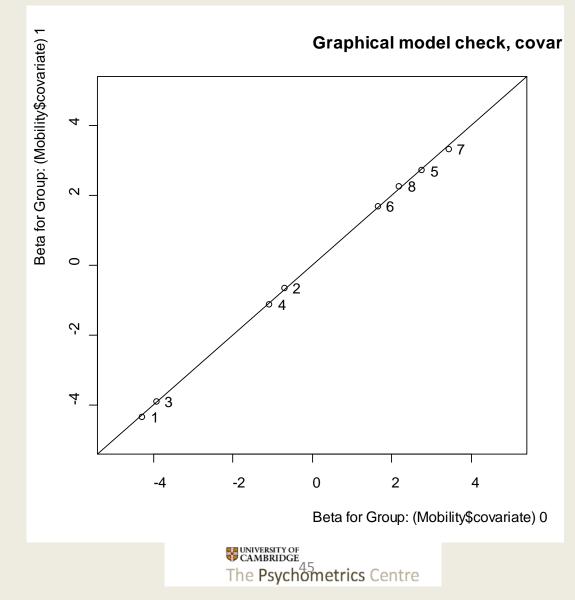


- no covariates in the data file; therefore simulate one:
- Mobility\$covariate<with(Mobility,rbinom(8445,1,.5))

Andersen2<-LRtest(ResMob,se=TRUE,splitcr=(Mobility\$cov ariate))

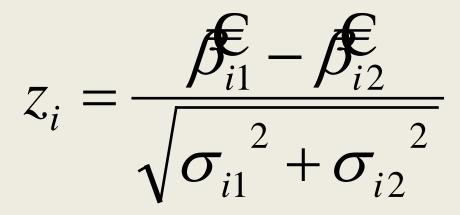
• the random split results in a non-significant test statistic:

- $\chi^2 = 3.15$ with df=7; p = .87
- the 8 items do have the same difficulty parameters in both samples



Wald Test

- Both tests provide only information on the fact that the difference between groups is at least for one item parameter big enough, to produce a significant test statistic
- Wald-Tests can be used to test the differences between the subgroups for every item



Wald Test

- Syntax for split with median raw score splitting:
- Wald1<-Waldtest(ResMob)

Wald Test

- In this example done for median of ability
- The following items fail this test:
 - Item 3: p = .002
 - Item 8: < .001

• typical post-hoc questions apply: Type I error, cross-validation,...

Differential Item Functioning

- These ideas are closely connected to the question of Differential Item Functioning (DIF)
- DIF explores whether there are systematic differences between groups in the difficulty of endorsing specific item categories
- these should not be present (or corrected for), because they question the fairness of a specific test
- topic of tomorrow

Martin Löf Test

- Procedure:
 - The Rasch Model is estimated independently in both ITEM subgroups
 - then the fit is compared using the likelihood:

 $\chi I = -2*(LN(Likelihood(full data set) + \sum_{i}(LN(Likelihood(Subgroup_1))))$

- For two subgroups with df=(l₁*l₂-1); with l₁ = number of items in subgroup 1 and l₂ = number of items in subgroup 2
- these Likelihoods should be the same, if the itemparameters (θ_j) were the same in all subgroups, i.e. the test should be non-significant

Martin Löf Test

- the default test is with items high vs. Low in difficulty
- Sample is devided into two groups:
 - a: itemparameter <= median (Items: 1, 2, 3, 4);</p>
 - b: itemparameter > median (Items: 5, 6, 7, 8);
- $\chi^2 = ~3438$ with df=15; p <<< .001
- The items are (at least with this split criterion) not homogeneous

Martin Löf Test

- Other splits possible, e.g.:
 - One has a hypothesis which items should be grouped together more closely
 - Random splits
- Please think of sub grouping / sub scaling! Then we will perform the test for this specific comparison!

Assessing Model Fit: Summary

- (Some) Ways to test the fit of the Rasch-Model:
 - Andersen's LR-Test: Itemparameters the same for different subgroups?
 - Wald-Tests: Itemparameters the same for different subgroups (pay attention to alpha-level!)
 - Martin-Löf-Test: Personparameters are the same when resulting from different item-sets

Assessing Model Fit: Summary

- Splits in this regard are usually only as good as the observed criteria
- Rost & von Davier (1997) proposed therefore:
 - estimate the Rasch-Model on your data
 - estimate a two class Mixed Rasch Model on the same data to identify the maximal possible differences between persons in response patterns
 - LR-test between these models or (my opinion)
 Andersen test with these groups

POLYTOMOUS RASCH MODEL

Polytomous Rasch Models

- The question for polytomous IRT models is, how the different categories can be mapped on the latent continuum
- already seen: Graded Response Model
- In the Rasch perspective especially the *Partial Credit Model* is of interest
- and the constraint version of the so-called *Rating Scale Model*

CAMBRIDGE CAMBRIDGE Centre

Generalized Partial Credit Model

• The model is:
$$P_{ix}(\theta) = \frac{\exp\sum_{s=0}^{x} a_i (\theta - b_{is})}{\sum_{r=0}^{m} \left[\exp\sum_{s=0}^{r} a_i (\theta - b_{is})\right]}$$

- Easier to see step by step (assume 3 categories):
 - Probability of completing 0 steps

$$P_{i0}(\theta) = \frac{\exp[0]}{\exp[0] + \exp[0 + a_i(\theta - b_{i1})] + \exp[0 + a_i(\theta - b_{i1}) + a_i(\theta - b_{i2})]}$$

Probability of completing 1 step

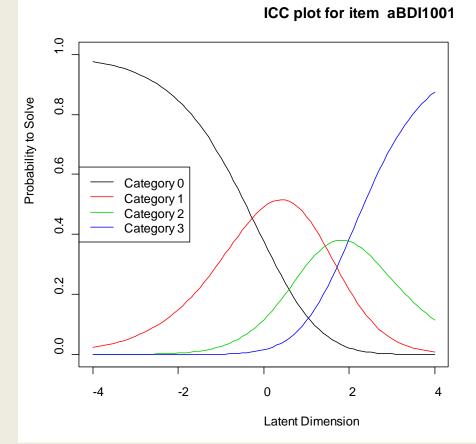
$$P_{i0}(\theta) = \frac{\exp\left[0 + a_i(\theta - b_{i1})\right]}{\exp\left[0\right] + \exp\left[a_i(\theta - b_{i1})\right] + \exp\left[0 + a_i(\theta - b_{i1}) + a_i(\theta - b_{i2})\right]}$$

The Partial Credit logic

- Created specifically to handle items that require logical steps, and partial credit can be assigned for completing some steps (common in mathematical problems)
- Completing a step assumes completing below
- Computing probability of response to each category is direct ("divide-by-total"):
 - Probability of responding in category x (completing x steps) is associated with ratio of
 - odds of completing all steps before and including this one, and
 - odds of completing all steps
 - Each step's odds are modelled like in binary logistic models
 - For an item with m+1 response categories, m step difficulty parameters b₁...b_m are modelled

Interpretation

- Step difficulty parameters have an easy graphical interpretation – they are points where the category lines cross
- Relative step difficulty reflects how easy it is to make transition from one step to another
 - Step difficulties do not have to be ordered
 - "Reversal" happens if a category has lower probability than any other at all levels of the latent trait



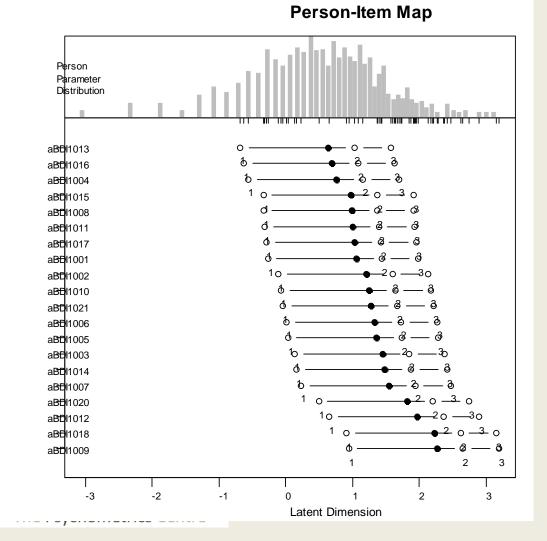
Estimating a Rating Scale Model in eRm

• starting with the restricted case of the RSM:

• The function "RSM" is used:

Result<-RSM(data, se=TRUE, sum0=TRUE)

- circles: thresholds
- black dots: difficulty (comparable to item mean)

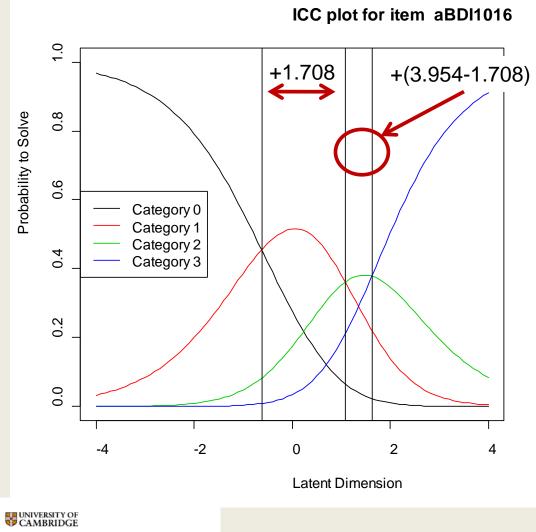


- the RSM imposes the exact same differences between category steps on every item
- in eRm estimated via
 - estimation of the first threshold
 - and estimation of difference parameters between first and second as well as first and third threshold

- Category parameter 0/1: first threshold, estimated
- Category parameter 1/2: second threshold, 1.708
- Category parameter 2/3: third threshold, 3.954

Category

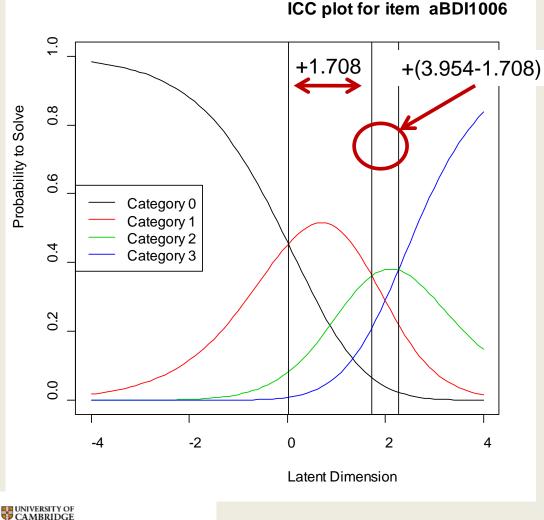
 parameter 0/1:
 first threshold,
 estimated; Item
 16 (sleep
 disturbances):
 .622



The Psychometrics Centre

Category

 parameter 0/1:
 first threshold,
 estimated; Item
 06 (feeling /
 waiting to be
 punished): .018

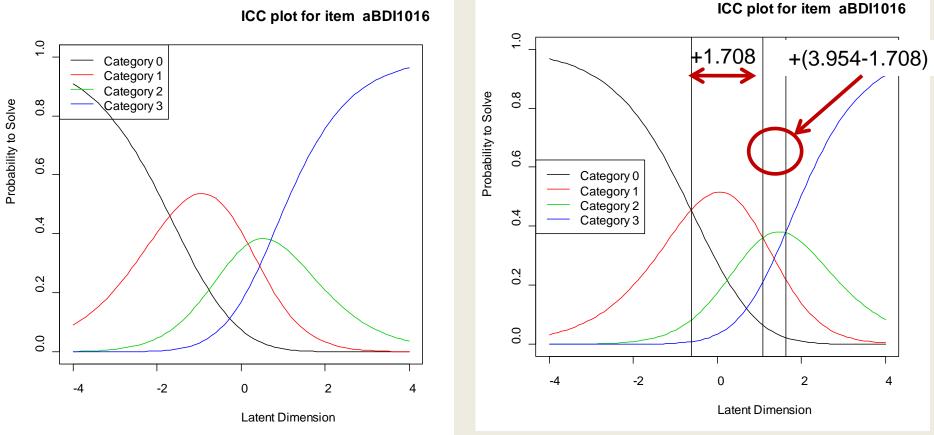


The Psychometrics Centre

- the major difference between these two models is
 - the PCM allows every item to have its own structure of category steps
 - whereas the RSM imposes the exact same differences between category steps on every item
 - (also models possible that use the same ratios etc)
 - AND every item can have its own number of categories

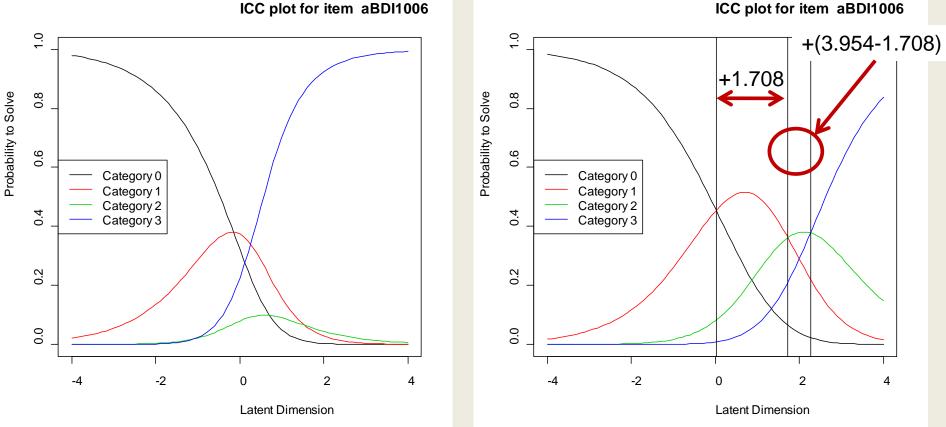
- the Partial Credit Model makes it possible that every item has its own pattern of thresholds
- in eRm estimated via
 - estimation of all thresholds of the items but one
 - (either parameterized that that have to sum to 0 or the first threshold is set to be 0)

- Category parameter 0/1: first threshold, estimated
- Category parameter 1/2: second threshold, estimated
- Category parameter 2/3: third threshold, estimated



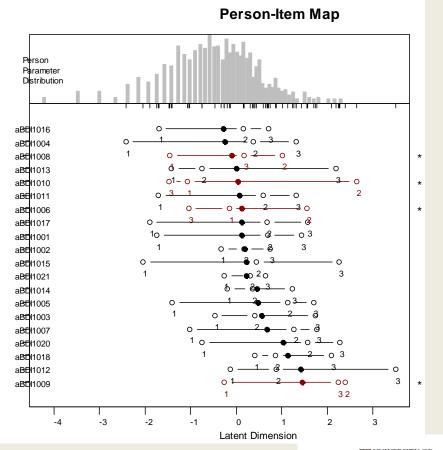
ICC plot for item aBDI1016

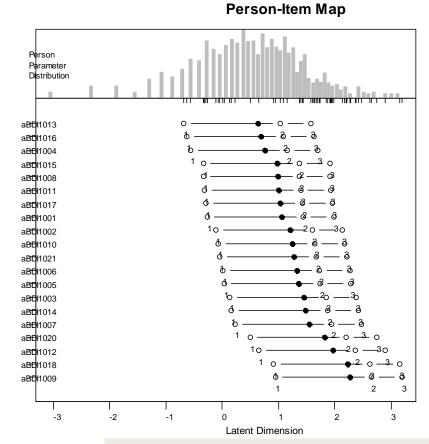
UNIVERSITY OF CAMBRIDGE The Psychometrics Centre

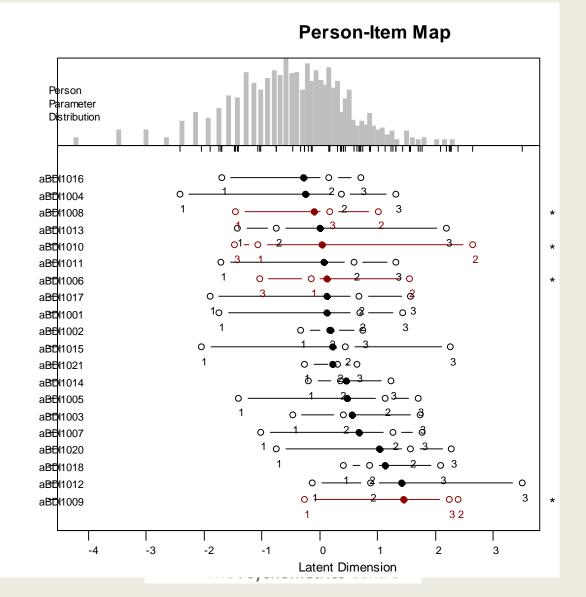


ICC plot for item aBDI1006

UNIVERSITY OF CAMBRIDGE The Psychometrics Centre

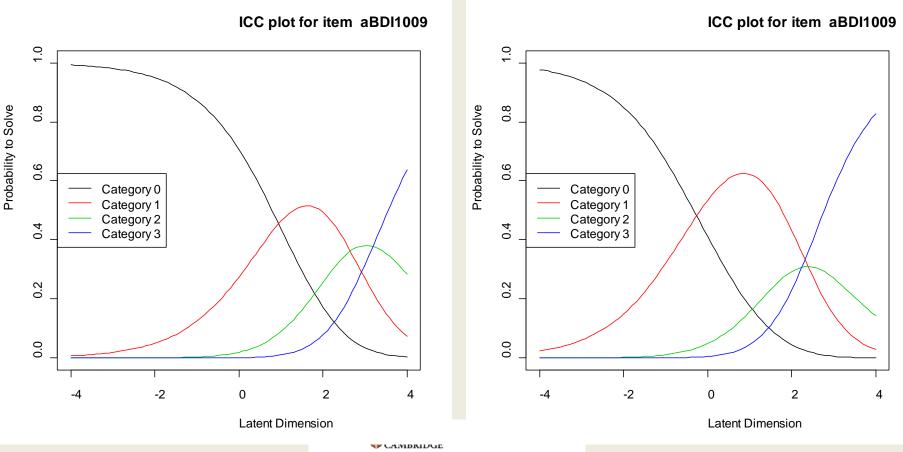






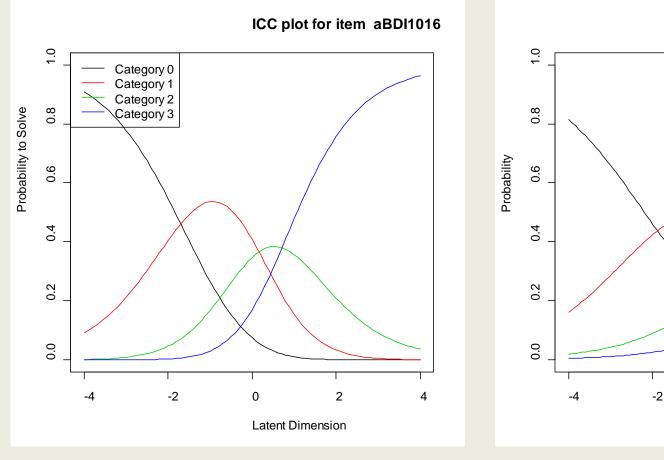
Differences RSM & PCM

• BDI item 9, suicidal ideation



The Psychometrics Centre

Differences PCM & ____



Item Response Category Char

2

3

4

0

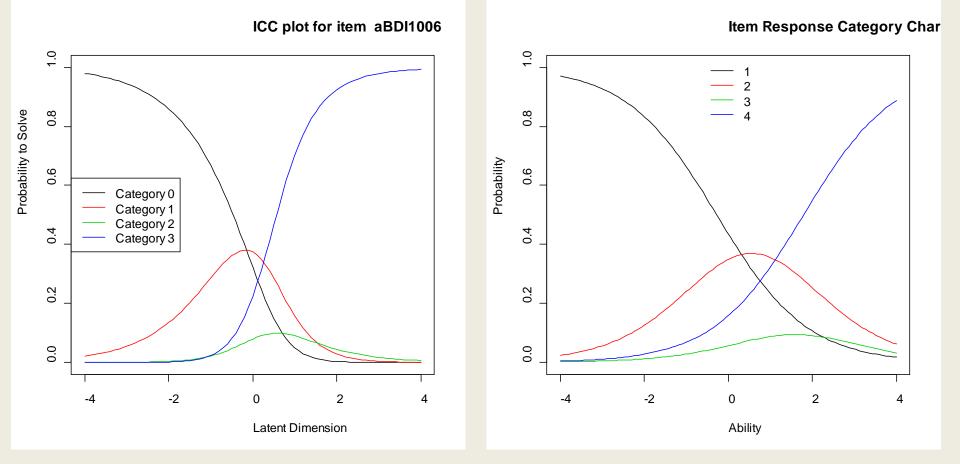
Ability

2

4

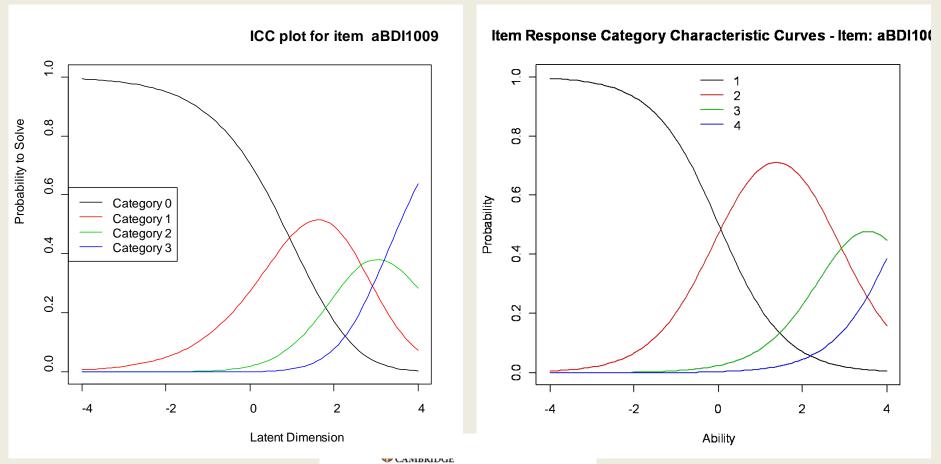
CAMBRIDGE The Psychometrics Centre

Differences PCM & ____



CAMBRIDGE The Psychometrics Centre

Differences PCM & _



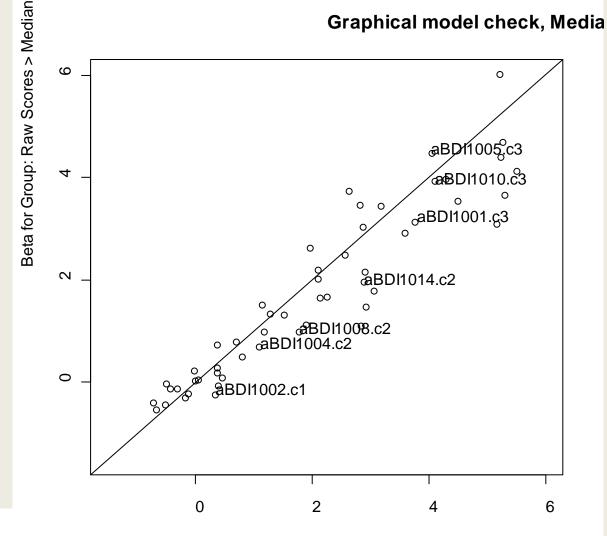
The Psychometrics Centre

Testing polytomous Rasch Models

- since in the estimation process for CML polytomous items are treated as if they were dichotomous items
- polytomous Rasch Models are testable in the same way as dichotomous Rasch Models

Testing polytomous Rasch Models

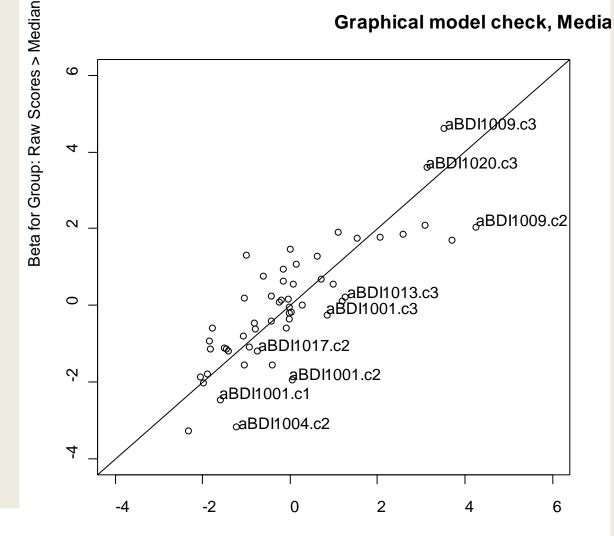
- Test with RSM
- p < .001



Beta for Group: Raw Scores <= Median

Testing polytomous Rasch Models

- Test with PCM
- p < .001



Beta for Group: Raw Scores <= Median

RSM vs PCM

- RSM needs substantially less parameters
- this was before the 2000s a substantial advantage

- today in my opinion no reason to use this model anymore
- (despite the case in which LR test between RSM and PCM shows no significant difference)

Rasch vs. 2PL or 3PL Model? (or PC vs. GR and GPCM?)

- This comparison has been of interest for many years, and generated quite emotional debate.
- Rasch model has many desirable properties
 - estimation of parameters is straightforward,
 - sample size does not need to be big,
 - number of items correct is the sufficient statistic for person's score,
 - measurement is completely additive,
 - specific objectivity (more on this tomorrow).
- But your data might not fit the Rasch model...

Why Rasch?

- often critique: there are no data, that fit that model
- several responses are possible:
 - bad theories produce bad empirics
 - Rasch is a very simple model and reality is not simple (LLTM, LLRA, Mix-Rasch, Multidimensional-/ Nominal-Rasch model,...)
 - BUT it is a model where in detail can be tested, whether it fits the data, or not

CAMBRIDGE CAMBRIDGE The Psychometrics Centre

Rasch vs. 2PL or 3PL Model? (Cont.)

- Two-parameter logistic model is more complex
 - Often fits data better than the Rasch model
 - Requires larger samples (500+)
- Three-parameter logistic model is even more complex
 - Fits data where guessing is common better
 - Estimation is complex and estimates are not guaranteed without constraints
 - Sample needs to be large in applications.

Choice of model must be pragmatic

- Desirable measurement properties of the Rasch model may make it a target model to achieve when constructing measures
 - Rasch maintained that if items have different discriminations, the latent trait is not unidimensional
- However, in many applications it is impossible to change the nature of the data
 - Take school exams with a lot of varied curriculum content to be squeezed in the test items
- There must be a pragmatic balance between the parsimony of the model and the complexity of the application

CAMBRIDGE The Psychometrics Centre

Rasch as model of choice

 for many applications also models with more parameters might be able to reliably discriminate between different levels of a continuous latent trait

Rasch as model of choice

- but the Rasch Model it is the only test model that ensures specific objectivity and in which the local stochastic independence assumption is testable
- therefore, especially in high stakes testing situations the Rasch model proves to be extremely useful